IBM Research Launches New Big Data Lab

 
 
By Darryl K. Taft  |  Posted 2013-10-11 Email Print this article Print
 
 
 
 
 
 
 


Leveraging the best research and product technologies for analytics on a scalable platform, the new Accelerated Discovery Lab empowers subject matter experts to quickly identify and work with assets such as datasets, analytics and other tools of interest relevant to their project. At the same time, it encourages collaboration across projects and domains to spark serendipitous discovery by applying nonproprietary assets to subsequent projects. This collaboration can occur whether the experts are co-located in the same physical location or are geographically distributed but working within the same system infrastructure.

“The history of computing shows that systems commoditize over time,” said Laura Haas, IBM Fellow and director of technology and operations at IBM Research Accelerated Discovery Lab, in a statement. “Moving forward, people and systems together will do more than either could do on their own. Our environment will provide critical elements of discovery that allow domain experts to focus on what they do best, and will couple them with an intelligent software partner that learns continuously, increasing in value over time.”

IBM said the process of drug discovery today spans an average of 12 to 15 years, with billions of dollars invested per drug, and a 90-plus percent fallout rate. Working primarily with pharmaceutical companies, IBM Research is using machine-based discovery technology to mine millions of published papers, patents and material properties databases. Then using advanced analytics, modeling and simulation to aid human discovery, IBM is able to predict where to make the most profitable research bets.

The inability to discover the next “new thing” quickly is a huge shortcoming faced by companies today across multiple industries, including retail, medicine and consumer goods. A diverse set of skills and tools was needed to integrate and analyze these many sources of data, from deep domain knowledge of chemistry, biology and medicine to data modeling and knowledge representation to systems optimization. The data sets, skills and infrastructure provided by the Accelerated Discovery Lab not only enable this work, but also are allowing the reuse of the tools in domains from materials discovery to cancer research, IBM said.

Regarding social analytics, marketers gather terabytes of data on potential customers, spend billions of dollars on software to analyze spending habits and segment the data to calibrate their campaigns to appeal to specific groups. Yet they still often get it wrong because they study demographics such as age, sex, marital status, dwelling place, income and existing buying habits instead of personality, fundamental values and needs. Recognizing this, scientists at IBM Research are helping businesses understand their customers in entirely new ways using terabytes of public social media data.

IBM is able to understand and segment personalities and buying patterns from vast amounts of noisy social media data and do so automatically, reliably and after as few as 50 tweets, the company said. This is data that marketers never had before, permitting much more refined marketing than traditional approaches based on demographics and purchase history alone. The Accelerated Discovery Lab brought together the expertise in text analytics, human-computer interaction, psychology and large-scale data processing to enable these new insights. Because clients from multiple industries including retail, government, media and banking are exploring different applications of social analytics in this common environment, the opportunities for unexpected discoveries abound as new analytics are applied to diverse challenges.

IBM also is helping companies save money with predictive maintenance. Natural resources industries, such as oil and gas, mining and agriculture, depend on the effectiveness and productivity of expensive equipment. Most maintenance processes result in costly in-field failures, which can cost a company $1.5 million for one day of downtime on a single piece of equipment. To have a real bottom-line impact, analytics and modeling need to be integrated with current processes.

IBM developed an intelligent condition monitoring technology using a comprehensive data set assembled in this domain. This system proactively presents decision support information to drive actions that reduce downtime, increase fleet productivity and minimize maintenance costs—in fact, one estimate suggests that a $30 billion company can save $3 billion a year by implementing predictive maintenance technology. The Accelerated Discovery Lab brought together experts in the domain, the systems, and mathematical modeling and provided systems infrastructure and expertise that freed the domain researchers and mathematicians to focus on the client problem and sped up the execution of the resulting models by a factor of 8, IBM said.

 



 
 
 
 
 
 
 
 
 
 
 
 
 

Submit a Comment

Loading Comments...

 
Manage your Newsletters: Login   Register My Newsletters























 
 
 
 
 
 
 
 
 
 
 
Rocket Fuel