Six Considerations for Choosing the Right Analytics Solution

 
 
By Darryl K. Taft  |  Posted 2016-03-16
 
 
 
 
 
 
 
 
 
  • Previous
    1 - Six Considerations for Choosing the Right Analytics Solution
    Next

    Six Considerations for Choosing the Right Analytics Solution

    We examine key factors to keep in mind when choosing an analytics solution that will help provide fast time to market and drive high adoption.
  • Previous
    2 - Incorporate a Modern, Intuitive User Experience
    Next

    Incorporate a Modern, Intuitive User Experience

    Depending on your needs, specific functionalities such as end-user data mash-ups, advanced data visualizations, and an open client interface that enables users to plug Excel worksheets into your new analytic offering can increase the value of your application. To get started, determine your user experience (UX) needs and how you can cater to all of your users, whether they are C-level executives or data scientists. Look for analytic interfaces that can serve different user personas and be wrapped in white labeling and single sign-on frameworks to deliver the look and feel you desire.
  • Previous
    3 - Opt for a Single Platform
    Next

    Opt for a Single Platform

    It's important to have built-in data management so you can easily turn your information assets into analytics and insights for your customers. An embedded analytics solution should be able to extract data from multiple sources—application data, customer data stores and even public sources of data. Then it must bring this data together into a unified view so users can analyze it within the application rather than extracting the data, importing it into Excel and working offline. After all, isn't the point of adding analytics to your application to drive stickiness and adoption?
  • Previous
    4 - Find Flexibility
    Next

    Find Flexibility

    Look for a solution that can be deployed in the cloud or on premise. With a hybrid model, you can pick the approach that best fits your customer needs when the time comes. As you bring new customers and users on board, you don't have to worry about their requirements. Some may choose for a cloud option while others might desire an on-premise version. Look for a solution that can be deployed in a public cloud, inside your own private cloud or on the premises of each of your customers. Additionally, embedding analytic software should easily integrate with your customers' data sources and other applications to avoid creating silos and enable an easy exchange of information between systems.
  • Previous
    5 - Look for Multi-tenancy
    Next

    Look for Multi-tenancy

    Single-tenant solutions require you to set up a separate business intelligence stack for each additional customer. If you have a lot of customers, this is not sustainable. You need a solution with built-in multi-tenancy that does not require a lot of overhead for on-boarding each new customer. If you have to re-create your data transformations, business logic, data processing and loads, metrics, definitions and reports every time you add a new customer, you had better be prepared to increase your administrative staff exponentially. Additionally, you should be able to customize your analytics for some customers, either to support new pricing strategies and higher-end packages, or to respond to special requests.
  • Previous
    6 - Think About Product Use in Strategic Ways
    Next

    Think About Product Use in Strategic Ways

    Usage analytics can be the key to new insights. Understanding which parts of your products are the most liked and used can help you realize and set the strategic direction of your roadmap. Collecting usage statistics can also benefit customers. By creating benchmarks, you can offer customers an easy way to compare their performance against industry averages, and see their strengths and weaknesses versus companies that are in the same regions and geographical distributions, or have the same size and operational model.
  • Previous
    7 - Prioritize Time to Market
    Next

    Prioritize Time to Market

    The complexities associated with an enterprise analytics architecture often translate to a slow product rollout. A delayed time to market depletes resources, while also increasing customer frustration and slowing user adoption. Consider using solution providers that can help get you up and running quickly and technology that is easy to deploy so that you can build, deliver and support an engaging product that customers use.
 

Data is an important asset and can be part of a strategic product offering. In fact, companies are increasingly using data as a monetization tool. In fact, the Economist Intelligence Group estimates that 60 percent of organizations are already generating revenue from their data and will continue to do so. However, creating analytic products from the ground up isn't easy. There is often a lack of resources and domain expertise in creating a differentiated product that offers governance capabilities to give your customers an accurate and consistent view of enterprise data. What's more, the time it takes to roll out analytics to each new customer delays the value realization and monetization of data. Instead of building a new analytics product, embedding the right analytics solution can help companies overcome these challenges and extract value from their data faster and more economically. eWEEK, with input from Farnaz Erfan, director of product strategy at business intelligence and analytics specialist Birst, offers six considerations for choosing an embedded analytics solution that will provide fast time to market and drive high adoption.

 
 
 
 
 
 
 
 
 
 
 

Submit a Comment

Loading Comments...
 
Manage your Newsletters: Login   Register My Newsletters























 
 
 
 
 
 
 
 
 
Rocket Fuel