IBM Makes Carbon Nanotube Breakthrough

 
 
By Darryl K. Taft  |  Posted 2015-10-01 Print this article Print
 
 
 
 
 
 
 
IBM logo


Over the summer, IBM unveiled the first seven nanometer node silicon test chip, pushing the limits of silicon technologies and ensuring further innovations for IBM Systems and the IT industry. By advancing research of carbon nanotubes to replace traditional silicon devices, IBM is paving the way for a post-silicon future and delivering on its $3 billion chip R&D investment announced in July 2014.

“These chip innovations are necessary to meet the emerging demands of cloud computing, Internet of Things and big data systems,” said Dario Gil, vice president of Science & Technology at IBM Research, in a statement. “As silicon technology nears its physical limits, new materials, devices and circuit architectures must be ready to deliver the advanced technologies that will be required by the cognitive computing era. This breakthrough shows that computer chips made of carbon nanotubes will be able to power systems of the future sooner than the industry expected.”

Carbon nanotubes represent a new class of semiconductor materials that consist of single atomic sheets of carbon rolled up into a tube. The carbon nanotubes form the core of a transistor device whose superior electrical properties promise several generations of technology scaling beyond the physical limits of silicon.

“For any advanced transistor technology, the increase in contact resistance due to the decrease in the size of transistors becomes a major performance bottleneck,” Gil said. “Our novel approach is to make the contact from the end of the carbon nanotube, which we show does not degrade device performance. This brings us a step closer to the goal of a carbon nanotube technology within the decade.”

Electrons in carbon transistors can move more easily than in silicon-based devices, and the ultra-thin body of carbon nanotubes provides additional advantages at the atomic scale. Inside a chip, contacts are the valves that control the flow of electrons from metal into the channels of a semiconductor. As transistors shrink in size, electrical resistance increases within the contacts, which impedes performance. Until now, decreasing the size of the contacts on a device caused a commensurate drop in performance – a challenge facing both silicon and carbon nanotube transistor technologies.

IBM researchers had to forego traditional contact schemes and invented a metallurgical process akin to microscopic welding that chemically binds the metal atoms to the carbon atoms at the ends of nanotubes. This ‘end-bonded contact scheme’ allows the contacts to be shrunken down to below 10 nanometers without deteriorating performance of the carbon nanotube devices.

“This IBM end-cap success paves the way for commercial nanotube structure chips using time-proven silicon photolithography techniques for manufacturing at scale,” Richard Doherty, research director at The Envisioneering Group, told eWEEK. “Succeeding with these welded end caps at nine nanometers gives courage and confidence to the industry to there being an alternative semiconductor path for silicon getting more and more inefficient as we push the limits of silicon under Moore’s Law. The goal is production within a decade, I am sure they want to achieve this faster than that if possible.”

 



 
 
 
 
 
 
 
 
 
 
 
 
 

Submit a Comment

Loading Comments...
 
Manage your Newsletters: Login   Register My Newsletters























 
 
 
 
 
 
 
 
 
 
 
Rocket Fuel