CIO Tests Embedded RFID Chip

 
 
By Evan Schuman  |  Posted 2005-01-28
 
 
 

CIO Tests Embedded RFID Chip


As an emergency medicine physician, Dr. John D. Halamka immediately saw the life-saving potential of embedding tiny wireless RFID (radio-frequency identification) devices in people. As the CIO of the Harvard Medical School, he was naturally skeptical of such devices and wanted to test them thoroughly before recommending their adoption.

As a physician CIO, he knew that there would be risks inserting any foreign object into a human being and that the body might interfere with the devices functioning and that the device could interfere with the bodys functioning.

Therefore, Halamka said he did the only reasonable move: He offered himself as a radio-signal guinea pig and got a first-hand experience of having an embedded transmitter.

"Im not necessarily an advocate, but as a CIO and a physician, I think its important for me to evaluate it fully," Halamka said in an eWEEK.com interview. "Im just experimenting with the technology. I think RFID now is at the peak of the hype curve. It has great promise, but it will require a bit of time."

To read more about the FDAs approval of injected RFID chips, click here.

RFID technology is a subject of extreme interest to retailers, consumer goods manufacturers, law enforcement and the medical communities, but it has been beset by reports of inaccurate read rates and interference from other devices. The technology also has been the subject of privacy concerns.

Halamkas experiment is intended to see how the variables of the human body affect the devices functioning and its read rate and whether RFID can be a practical, safe and privacy-respecting technology in todays hospitals.

One medical benefit that Halamka sees is in dealing with nonresponsive patients—perhaps an unconscious car accident victim—who have particular medical issues that the physician needs to know.

The chip itself is a passive RFID device that merely transmits a 16-digit numeric identifier. Properly credentialed emergency room staff could access a secure Web site that would allow them to identify him and access relevant medical records, he said.

To read about the FDAs plans to fight counterfeit drugs with RFID, click here.

Another possibility is medical error reductions. Halamka painted a scenario where a hospitalized patient has an embedded RFID tag. All medication bottles would also have RFID tags, as would the identification tags worn by nurses and doctors.

"What if a nurse walks into your room with the wrong medication?" he asked. With the triple RFID scenario he painted, the chart information could immediately flag that the medication about to be administered was incorrect.

Although its more intrusive, the RFID approach would work a lot better than having a tag attached to todays typical hospital patient plastic wristband, he said, as those tags can be lost or damaged.

Next Page: How the RFID chip is implanted and the real world read rate results.

Implant procedure, real world


read rate results">

Halamka said the implant procedure itself was "painless" and "took five minutes in a doctors office." The RFID device is about the size of two grains of rice, and its inserted using what Halamka described as "a big syringe."

It is typically inserted into the triceps area of the right arm, an attractive area because its relatively clean, more pain-free than other body parts, and its easily accessed in an emergency.

To be precise, the skin is treated with a sterile iodine solution and the RFID chip is inserted less than one-quarter-of-an-inch into the triceps fascia, which is a connective tissue that envelops the triceps. Because it rests within the fascia, it is not technically considered subdermal, and it also does not cause the discoloration typical with subdermal procedures.

The benefit of the consistent placement, Halamka said, is that emergency room personnel can routinely give a quick scan to that part of the arm to see if an RFID chip exists. Otherwise, there would be no way for staff to know that it existed.

A trio of big-league retail CIOs demonstrated their future plans for RFID at the National Retail Federation show in January. To read more, click here.

Halamka said his body seems to have accepted the RFID chip without incident. His chip is made by VeriChip Corp., a wholly owned subsidiary of Applied Digital.

"The RFID is enclosed in medical-grade glass. It is just seen as a foreign body" but a non-threatening one, he said. "Theres no immune system on the planet that attacks glass." This is similar to the way the body sees a properly administered intravenous (IV) insert, Halamka said, adding that the glass itself is so thin that it has no risk of breaking.

The implanted RFID chip "will last for hundreds of years, longer than I will," Halamka said.

But if there is some kind of a problem, the method for removing the chip is far more invasive and troublesome than inserting it. The removal process involves actual surgery, albeit a minor one.

Because it is a passive device, the RFID chip requires no independent power source and accesses all needed power from the radio signal. The small handheld reader needs to be within five inches of the chip to get a signal.

RFID adoption is likely to hit more snags this year. For details, click here.

Halamka has found that the read-rates under real-world conditions are excellent and consistent. "I have experimented with reading it from a variety of angles and distances," including during a mountain climb where the temperature fell to minus-20 at a 6,000-foot altitude.

The only reader-related concern the CIO expressed was that the readers are proprietary. Once standards take better hold and competing quality readers are on the market, hed feel better about recommending the technology, he said.

As for the privacy concerns, the doctor said he was confident it could be worked out. He envisions a trusted host-like approach, where a major hospital would have access and could then extend access to trusted individuals.

Halamka estimated that there are about 200 people today with the RFID chip implants, many of them in Mexico where the government is using them as secure identifiers.

Retail Center Editor Evan Schuman can be reached at Evan_Schuman@ziffdavis.com.

Check out eWEEK.coms for the latest news, views and analysis of technologys impact on health care.

Rocket Fuel