Take a Number - Page 4

Stretching the Limits

For one particular type of test, which measures the rate of absorption by the human body of radiation from things such as mobile phones, the FCC has just a single engineer capable of doing the work. While both his colleagues and industry praise his skills, the volume of gear entering the market is overwhelming.

Still, he is one of the lucky ones. The equipment he uses for so-called Specific Absorption Rate tests is one of the few state-of-the-art setups at the FCCs suburban Maryland laboratories, where most of the best gear is only slightly younger than the 1970s-era building it occupies. The SAR setup, a $200,000 installation with a precision industrial robotic arm, highly sensitive antenna, computers and a hollow "body" cavity to mimic humans, was purchased on a one-time budget grant.

All that is for testing something that has no definite risk. Neither the FCC engineers nor other scientific studies have proven any link between the radiation and medical problems. But the political side of the agency made the test a requirement based on a 1995 Environmental Protection Agency report.

Compare that to the mobile van the FCC labs use to test digital TV receivers, including PC cards, by driving throughout the Washington, D.C., and Baltimore area. The equipment in the van was cobbled together with castoffs from other parts of the labs, and installed into a rusty, 1985-vintage cargo van purloined from the agencys enforcement division. Including the one cutting-edge measurement system purchased specifically for the van, the total cost was about $75,000. Thats less than 10 percent of what a TV network might spend on the same type of vehicle and equipment.

"Ninety percent of our equipment is 10 years old or older," Nichols said. "The biggest problem is that they dont have the new functions in them."

Inside the main lab building, the most advanced measurement equipment owned by the FCC dates back to the early 1980s. Much of it is top-quality Hewlett Packard gear--at least it was, at that time. Those instruments were built before the invention of Code Division Multiple Access, one of the most widely used digital transmission standards for mobile phones. They were also built before transmission on frequencies above 2 gigahertz or so were anticipated. As a result, the lab has to rely on borrowed gear or outside tests.

In fact, the newest piece of test equipment on the site, an oddly shaped, elongated aluminum box designed to permit highly calibrated testing indoors, is being borrowed from the private sector. While it has the potential to speed up testing, because it isnt subject to the weather delays of the calibrated outdoor test field, it could be taken away from the labs at any time. And the FCC doesnt have the $150,000 to build or buy its own.

"All these new devices [on the market] require new equipment to do measurements," Franca said. "Were seeing equipment going into higher and higher frequencies. We dont have all the capability to measure at all those high frequencies." And the few machines the lab does own that can measure at frequencies above 2 GHz are difficult to calibrate--again, because of a lack of proper equipment.