IBM to Spend $3 Billion to Research the Future of Chips, Systems - Page 2

Neurosynaptic computing would involve systems that mirror the human brain in their ability to quickly collect information, analyze data and learn from their mistakes. They not only would mimic the brain's computing efficiency, but also its size and power usage. IBM officials said the goal is to build such a system that holds 10 billion neurons and 100 trillion synapses, while consuming only a kilowatt of power in a form factor that fits into an area less than two liters in volume. In 2011, IBM unveiled prototypes of such chips.

Among the possible replacements for silicon chips are carbon nanotubes, which IBM officials described as "single atomic sheets of carbon rolled into a tube." They would form the basis of a transistor device that will work in a similar fashion as a silicon transistor, but offer greater performance, and could be used in everything from servers, high-performance computing systems and smartphones, the company said.

Graphene—pure carbon in a one-atomic-layer thick sheet—also could be used to replace silicon and other materials. Electrons can move 10 times faster in graphene than in silicon, and the material could lead to faster switching transistors for such devices as mobile phones. IBM last year demonstrated a graphene-based integrated circuit receiver front-end for wireless communications, the company said.

IBM isn't the only top-tier vendor to look at rearchitecting systems. Hewlett-Packard in June unveiled the Machine, an open-source server architecture that will include the company's memristor memory technology, custom processors, silicon photonics technology and its own operating system. HP executives said the tech industry and its customers are dealing with a tremendous influx of data.

"This huge and complex amount of data is growing at an exponential rate," Martin Fink, HP CTO and director of HP Labs, said in a post on the company blog. "We're all struggling to keep pace today. Toward the end of this decade, data growth will come at us at a rate that surpasses the ability of our current infrastructure to evolve to ingest, store and analyze it. A step change in computing technology is required."

IBM's investment announcement also comes at a time of transition for the company as it looks to sell its low-end x86 server business to Lenovo for $2.3 billion. The deal is expected to close by the end of the year, and IBM will be able to turn more of its attention and money to its Power and mainframe systems. Meyerson said IBM already is incorporating technologies into its processors to help deal with the data growth and new applications. He pointed to the CAPI (Coherent Accelerator Processor Interface) port in the new Power8 chips that can be used to connect specialized processors like graphics chips and field-programmable gateway arrays. Particular workloads can be offloaded onto the specialty chips, increasing the processor's performance and power efficiency.

He also noted IBM's efforts through the IBM Foundation and other programs to promote science and technology education and support such initiatives as STEM (Science Technology Engineering Mathematics) in schools. To address such challenges as new computing architectures, the industry will need more software and hardware engineers, chemists, physicists and biologists, he said.

"This is massively complex stuff," Meyerson said. "This is rocket science. … We need a lot of rocket scientists."