HP Unveils ARM-Based Moonshot Servers

By Jeffrey Burt  |  Posted 2014-09-29 Print this article Print

The new systems ramp up ARM's competition with Intel and give data centers greater compute choices.

Hewlett-Packard is unveiling two ARM-based servers as part of its Moonshot family of highly energy-efficient systems, a move that finally brings to market what the industry has been anticipating for years.

HP officials on Sept. 29 announced that the company has begun shipping the new systems—including the 64-bit ProLiant m400, which is powered by Applied Micro's eight-core X-Gene system-on-a-chip (SoC)—and will demonstrate the servers at ARM's TechCon 2014 show Oct. 1-3 in Santa Clara, Calif.

Officials with ARM and its various manufacturing partners—including Applied Micro, Advanced Micro Devices, Cavium and Marvell Technologies—for the past several years have been talking about extending the reach of ARM's low-power chip designs into the data center, where there is increasing demand not only for greater performance but for better energy efficiency. ARM's SoC designs—which are licensed by chip manufacturers, which build their own features atop the design and then sell the chips—are found in the bulk of smartphones and tablets on the market today.

ARM executives as far back as 2011 have talked about the natural progression of the company's architecture into low-power servers. ARM has since developed its ARMv8-A 64-bit architecture, and with HP's Moonshot systems, the first systems are hitting the market.

"It really signals the beginning," Patrick Moorhead, principal analyst at Moor Insights and Strategy, told eWEEK. "Up to this point, it's been samples, previews and design wins. It's the real deal now."

It also opens up another front in ARM's growing competition with Intel, which is trying to make inroads into the mobile device space, hoping to chip away at some of ARM's dominant market share. While Intel executives have questioned how large a part of the server market the microserver space will account for in the coming years, they have not sat idly by awaiting the arrival of ARM-based 64-bit servers. The company has leveraged its low-power Atom platform for microservers, and last year launched the second-generation C2000 "Avoton" SoCs. The company will follow up next year with the 14-nanometer "Denverton" chip.

"Intel has a robust lineup and more is on the way," Moorhead said.

The first of the HP Moonshot systems are powered by x86 chips from Intel and AMD. However, HP officials have said since launching the initiative in 2011 that ARM chips will be a key to the Moonshot effort, and Paul Santeler, vice president and general manager of HP's Moonshot Business Unit, told eWEEK that more ARM-based systems will be announced later this year.

Dell is another system vendor that has put ARM into servers with its "Copper" and "Zinc" projects, and also offers a proof-of-concept effort that enables programmers to access systems over the Internet that use Applied Micro chips and are housed at a Dell Solutions Center in Texas. Dell is ready to move forward with the ARM servers when businesses start asking about it, but Dell executives have said end-user demand is not clear and that some interest may have waned while waiting for the first 64-bit ARM chips to come to market.

Santeler said HP is hearing from enterprises that want ARM-based systems for particular workloads, saying that ARM technology is being introduced to a market that is rapidly changing due to the demands from such trends as mobile computing, big data and the cloud.

"They're taking the training wheels off the bike," he said.

HP's Moonshot systems are what officials call cartridges or modules that fit into a 4.3U (7.5-inch) chassis. The modules share such components as storage, networking, cooling and management, which are housed in the chassis. The ProLiant m400, which is powered by Applied Micro's X-Gene 1 SoC (Applied Micro has begun sampling its next-generation X-Gene 2 chips), includes 64GB of attached memory, a small solid-state disk with 120GB to 480GB of capacity, and a 10 Gigabit Ethernet network interface card (NIC) from Mellanox Technologies. The system is designed for such workloads as dynamic Web content delivery, using such technologies as in-memory key-value caching to reduce the burden on databases.



Submit a Comment

Loading Comments...
Manage your Newsletters: Login   Register My Newsletters

Rocket Fuel