Close
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Subscribe
Logo
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Subscribe
    Home Applications
    • Applications

    Big Data Project Planning and Deployment: 10 Suggested Best Practices

    By
    Chris Preimesberger
    -
    November 21, 2012
    Share
    Facebook
    Twitter
    Linkedin

      eWEEK content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

      PrevNext

      1Recognize the Opportunity

      1

      Big data is everywhere, so find your opportunity to put it to work. If your organization does not produce “big data,” there are still valuable external data sets that, if you could access and analyze them, would provide better operational insight and deliver a new competitive advantage. For example, professionals within the financial service sector can pay a small amount of money to access a huge amount of intra-day trading information (equity exchanges, commodity exchanges, etc.) in order to find key data that can help them make more strategic business decisions. Or a wide array of census and population information is now made available by many government organizations. The world of data has become much more open. How can you participate?

      2Don’t Forget Aggregate Data

      2

      Many organizations today are in a position to gather data that they already automatically aggregate. And, therefore, potentially valuable insights are locked in that data waiting to be discovered. For example, if you have an application that combines data from many organizations within an industry, this aggregate data likely will yield new macro insight about the industry. Software as a service (SaaS) providers are often powerful examples of aggregate data. Each minute, a SaaS provider gathers potentially valuable information about the health of an industry or the trends in a business process. Occasionally, this data is even more valuable than the underlying SaaS application.

      3Big Data Is Not Just About Volume

      3

      Volume is just one key element in defining big data; interestingly, it may be the least important of three elements—the other two being variety and velocity. Taking advantage of a big data opportunity means creating an agile architecture that can work as easily with high-velocity, semi-structured data as it does with batches of traditional (relational) data. Combining any variety of data types to enable new correlations and insights will most often be where big value is created.

      4Combine Big and Traditional Data Types

      4

      This is the Holy Grail within every big data opportunity and where the most rewarding insights can be discovered. Examples of this value can be found in any industry: Combining all known weather data, soil condition and crop-planting schedules can improve farm yields and better manage crop insurance premiums. Another example is mapping social media feedback to CRM buyer profiles, which can help improve buyer loyalty and target premium offers. Today, it seems we are limited here only by the breadth of our imagination. Toward this goal, the big data analytic architecture must be properly designed.

      5Choose an Architecture That Can Scale

      5

      Most big data projects start out small and expand as needed. In Jaspersoft’s survey, the company found that 63 percent of respondents said the estimated daily volume of their projects was gigabytes, not terabytes or petabytes. That said, with project success comes the need to grow data volumes as more is collected. New, low-cost data storage and compute infrastructures (often via cloud services) make even large volumes of data readily available. Creating an analytic architecture that can take advantage of this is vital. The axiom becomes the following: Be prepared for expansion when it comes to your big data project.

      6It Is Not a Popularity Contest

      6

      Most people think of Apache Hadoop as the de facto analysis tool for big data. While it is certainly a powerful and useful tool, Hadoop itself does not address every big data need. There are many purpose-built products and services for specific big data use cases; choosing the ones best suited to your task is crucial.

      7The Latency Factor

      7

      Your big data business opportunity is best solved by understanding both how quickly the data aggregates and how quickly it must be put to work before it becomes stale. Understanding this acceptable latency is necessary to choosing the right big data architecture. Three useful approaches are data exploration, operational reporting and analytics.

      8Why Data Scientists Are Sought

      8

      There is a reason data scientists have become so popular in the last few years: Their deep domain knowledge has become essential for success with big data projects. This is the human intelligence component that combines business expertise with genuine knowledge of the data. Using existing expertise and adding staff that will be able to make sense of the data is essential.

      9Your Current Tools Might Not Be the Best Ones

      9

      Don’t choose a data store, integration software or reporting and analysis tool just because you’ve used them before. It’s a bold new big data world, and many legacy business intelligence (BI) tools are not well-suited to storing, processing or analyzing modern data types. Not choosing the right tool for the job can lead to failure.

      10Equip Yourself With the Right Tools

      10

      The right reporting and analysis tool should drive analysis of both big and traditional-sized data sets (both structured and unstructured data). Additionally, they should scale to reach all those in an organization (with contextually relevant data) who should be empowered to make data-based decisions and infuse real intelligence into processes that enable organizations to compete more favorably on the basis of speed.

      PrevNext

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      MOST POPULAR ARTICLES

      Artificial Intelligence

      9 Best AI 3D Generators You Need...

      Sam Rinko - June 25, 2024 0
      AI 3D Generators are powerful tools for many different industries. Discover the best AI 3D Generators, and learn which is best for your specific use case.
      Read more
      Cloud

      RingCentral Expands Its Collaboration Platform

      Zeus Kerravala - November 22, 2023 0
      RingCentral adds AI-enabled contact center and hybrid event products to its suite of collaboration services.
      Read more
      Artificial Intelligence

      8 Best AI Data Analytics Software &...

      Aminu Abdullahi - January 18, 2024 0
      Learn the top AI data analytics software to use. Compare AI data analytics solutions & features to make the best choice for your business.
      Read more
      Latest News

      Zeus Kerravala on Networking: Multicloud, 5G, and...

      James Maguire - December 16, 2022 0
      I spoke with Zeus Kerravala, industry analyst at ZK Research, about the rapid changes in enterprise networking, as tech advances and digital transformation prompt...
      Read more
      Video

      Datadog President Amit Agarwal on Trends in...

      James Maguire - November 11, 2022 0
      I spoke with Amit Agarwal, President of Datadog, about infrastructure observability, from current trends to key challenges to the future of this rapidly growing...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2024 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×