Close
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Logo
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Home Innovation
    • Innovation

    Google Tests New Approach to Training Machine Learning Models

    Written by

    Jaikumar Vijayan
    Published April 12, 2017
    Share
    Facebook
    Twitter
    Linkedin

      eWEEK content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

      Researchers in the machine learning community typically use massive datasets distributed across multiple servers in the cloud when training machines to interact with users in a more intuitive and independent manner. Google is testing a new collaborative machine learning approach in which the training data is spread across millions of individual Android mobile devices instead.

      The Federated Learning approach, according to the company, allows for machine learning models to be trained from actual user interaction with their Android devices.

      The approach enables machine learning systems to be trained more quickly from data on individual smartphones and tablets and with less power consumption compared with systems where the training data is stored in the cloud. Importantly, it also allows users to benefit immediately from improvements made to device machine learning models, Google researchers Daniel Ramage and Brendan McMahan said in the company’s Research Blog.

      The company is currently testing the approach with the querying feature in Gboard, Google’s Keyboard for Android devices. When Gboard shows a user a suggested query, the phone will store information on the device about the context in which the query was suggested and whether the user clicked on the suggestion or ignored it. Federated Learning then processes the on-device history to suggest improvements to the manner in which Gboard makes a query suggestion the next time the user interacts with it, the two Google researchers said.

      All changes that are made to the machine learning model on the device are then summarized and sent as an encrypted update back to Google’s machine learning servers in the cloud.

      To protect user privacy, the servers are programmed to wait until they receive between hundreds and sometimes thousands of similar updates from other devices. The servers then decrypt and aggregate the updates and see if the data can be used to improve the overall shared machine model in the cloud.

      “Federated Learning enables mobile phones to collaboratively learn a shared prediction model while keeping all the training data on device,” McMahan and Ramage said. It decouples “the ability to do machine learning from the need to store the data in the cloud,” they said.

      Implementing the approach has not been easy. For instance, machine learning algorithms are typically designed to run datasets that are partitioned in a homogenous fashion across multiple cloud servers. The algorithms are optimized to work with high-throughput and low latency network connections.

      With Federated Learning, the training data is spread in an uneven fashion across millions of devices with high-latency and relatively lower bandwidth connections. Unlike cloud servers, not all of the mobile devices are also always available for training, the Google researchers said.

      One approach that Google developed to address some of these challenges is called the Federated Averaging algorithm, which is designed to train machine learning systems with far less communication compared with typical systems. Google also had to develop a new approach to compress updates from individual user devices to reduce upload communication costs.

      Google’s on-device training uses a scaled-down version of its TensorFlow machine learning technology. To minimize user disruption, Google has had to develop a way to ensure that on-device training only happens when the device is idle and on a free wireless connection, according to McMahan and Ramage.

      “Applying Federated Learning requires machine learning practitioners to adopt new tools and a new way of thinking,” the two researchers said. But the potential benefits make the effort worthwhile, they noted.

      Google is currently exploring using the same approach with other applications as well as including photo rankings and language models.

      Jaikumar Vijayan
      Jaikumar Vijayan
      Vijayan is an award-winning independent journalist and tech content creation specialist covering data security and privacy, business intelligence, big data and data analytics.

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      MOST POPULAR ARTICLES

      Artificial Intelligence

      9 Best AI 3D Generators You Need...

      Sam Rinko - June 25, 2024 0
      AI 3D Generators are powerful tools for many different industries. Discover the best AI 3D Generators, and learn which is best for your specific use case.
      Read more
      Cloud

      RingCentral Expands Its Collaboration Platform

      Zeus Kerravala - November 22, 2023 0
      RingCentral adds AI-enabled contact center and hybrid event products to its suite of collaboration services.
      Read more
      Artificial Intelligence

      8 Best AI Data Analytics Software &...

      Aminu Abdullahi - January 18, 2024 0
      Learn the top AI data analytics software to use. Compare AI data analytics solutions & features to make the best choice for your business.
      Read more
      Latest News

      Zeus Kerravala on Networking: Multicloud, 5G, and...

      James Maguire - December 16, 2022 0
      I spoke with Zeus Kerravala, industry analyst at ZK Research, about the rapid changes in enterprise networking, as tech advances and digital transformation prompt...
      Read more
      Video

      Datadog President Amit Agarwal on Trends in...

      James Maguire - November 11, 2022 0
      I spoke with Amit Agarwal, President of Datadog, about infrastructure observability, from current trends to key challenges to the future of this rapidly growing...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2024 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×