Close
  • Latest News
  • Cybersecurity
  • Big Data and Analytics
  • Cloud
  • Mobile
  • Networking
  • Storage
  • Applications
  • IT Management
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Menu
Search
  • Latest News
  • Cybersecurity
  • Big Data and Analytics
  • Cloud
  • Mobile
  • Networking
  • Storage
  • Applications
  • IT Management
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Home Applications
    • Applications
    • Development
    • Networking
    • Servers

    Parallel Java Programming System Launched by University

    By
    Darryl K. Taft
    -
    October 14, 2010
    Share
    Facebook
    Twitter
    Linkedin

      With an emerging need for programs that take advantage of today’s multicore and parallel systems, the University of Illinois has come up with an effort to deliver a parallel version of the Java language.

      Indeed, the University of Illinois at Urbana-Champaign has launched a project to deliver a Deterministic Parallel Java (DPJ) implementation under funding from the National Science Foundation (NSF), Intel and Microsoft.

      In a press release on the new technology, Cheri Helregel, a spokeswoman for the Universal Parallel Computing Research Center (UPCRC) at the University of Illinois at Urbana-Champaign, said the new parallel language is the first to guarantee deterministic semantics without run-time checks for general-purpose, object-oriented programs. It’s also the first language to use compile-time type checking for parallel operations on arrays of references (“pointers”) to objects, and the first language to use regions and effects for flexible, nested data structures.

      University of Illinois Computer Science professor Vikram Adve and Ph.D. student Robert Bocchino launched the effort to help “make parallelism easy,” and formed a team to focus on developers and their needs. They wanted to develop a language that supports programming styles developers find most familiar and productive, such as mainstream object-oriented programming languages.

      According to the UPCRC’s Deterministic Parallel Java Website:

      ““The broad goal of our project is to provide deterministic-by-default semantics for an object-oriented, imperative parallel language, using primarily compile-time checking. ‘Deterministic’ means that the program produces the same visible output for a given input, in all executions. ‘By default’ means that deterministic behavior is guaranteed unless the programmer explicitly requests non-determinism. This is in contrast to today’s shared-memory programming models (e.g., threads and locks), which are inherently nondeterministic and can even have undetected data races.”“

      The resulting DPJ implementation is a safe and modular parallel language that helps developers port parts of sequential Java applications to run on multicore systems. It also helps developers rewrite parts of parallel Java applications to simplify debugging, testing and long-term maintenance. DPJ-ported parallel code can co-exist with ordinary Java code within the same application, so that programs can be incrementally ported to DPJ, the UPCRC said.

      Moreover, DPJ simplifies debugging and testing of parallel software as all potential data races are caught at compile-time, the UPCRC press release said. Because DPJ programs have obvious sequential semantics, all debugging and testing of DPJ code can happen essentially like that for sequential programs. Maintenance becomes easier as DPJ encodes the programmer’s knowledge of parallel data sharing patterns in DPJ annotations-simplifying the tasks of understanding, modifying and extending parallel DPJ software.

      And because DPJ features the same program annotations, each function or class can be understood and parallelized in a modular fashion, without knowing internal parallelism or synchronization details of other functions or classes. The University of Illinois researchers said this is especially important because modularity is crucial for creating large-scale software applications. Yet, they say modularity is severely compromised when using any of today’s mainstream shared memory programming models.

      Adve and his group are also working with Intel to define a similar set of extensions to C++ (DPC++), which can be used to check similar properties for existing programming models such as Cilk, OpenMP and Threading Building Blocks (TBB).

      For its part, the UPCRC makes a distinction between concurrent programming and parallel programming. A page on programming on the UPCRC said:

      ““We distinguish between concurrent programming that focuses on problems where concurrency is part of the specification (reactive code such as an operating system, user interfaces, or on-line transaction processing, etc.), and parallel programming that focuses on problems where concurrent execution is used only for improving the performance of a transformational code. The prevalence of multicore platforms does not increase the need for concurrent programming and does not make it harder; it increases the need for parallel programming. It is our contention that parallel programming is much easier than concurrent programming; in particular, it is seldom necessary to use nondeterministic code.”“

      Avatar
      Darryl K. Taft
      Darryl K. Taft covers the development tools and developer-related issues beat from his office in Baltimore. He has more than 10 years of experience in the business and is always looking for the next scoop. Taft is a member of the Association for Computing Machinery (ACM) and was named 'one of the most active middleware reporters in the world' by The Middleware Co. He also has his own card in the 'Who's Who in Enterprise Java' deck.

      MOST POPULAR ARTICLES

      Android

      Samsung Galaxy XCover Pro: Durability for Tough...

      Chris Preimesberger - December 5, 2020 0
      Have you ever dropped your phone, winced and felt the pain as it hit the sidewalk? Either the screen splintered like a windshield being...
      Read more
      Cloud

      Why Data Security Will Face Even Harsher...

      Chris Preimesberger - December 1, 2020 0
      Who would know more about details of the hacking process than an actual former career hacker? And who wants to understand all they can...
      Read more
      Cybersecurity

      How Veritas Is Shining a Light Into...

      eWEEK EDITORS - September 25, 2020 0
      Protecting data has always been one of the most important tasks in all of IT, yet as more companies become data companies at the...
      Read more
      Big Data and Analytics

      How NVIDIA A100 Station Brings Data Center...

      Zeus Kerravala - November 18, 2020 0
      There’s little debate that graphics processor unit manufacturer NVIDIA is the de facto standard when it comes to providing silicon to power machine learning...
      Read more
      Apple

      Why iPhone 12 Pro Makes Sense for...

      Wayne Rash - November 26, 2020 0
      If you’ve been watching the Apple commercials for the past three weeks, you already know what the company thinks will happen if you buy...
      Read more
      eWeek


      Contact Us | About | Sitemap

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Property of TechnologyAdvice.
      Terms of Service | Privacy Notice | Advertise | California - Do Not Sell My Information

      © 2021 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×