Close
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Subscribe
Logo
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Subscribe
    Home Applications
    • Applications

    Distributed Computing Version of Google TensorFlow Debuts

    Written by

    Jaikumar Vijayan
    Published April 15, 2016
    Share
    Facebook
    Twitter
    Linkedin

      eWEEK content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

      Five months after Google released its powerful TensorFlow machine learning technology to the open-source community, the company has made available for free a new, more versatile version of the software for anyone to use.

      The numerous developers, engineers, hobbyists and others that have been using and testing TensorFlow over the past few months now have access to a version of the software library with support for distributed computing. The new TensorFlow 0.8 is designed to run across multiple systems at the same time and gives developers an opportunity to “train” their AI-like applications faster than was possible previously.

      Google has been using a version of TensorFlow for years to power some of its most popular apps, including Smart Reply in Inbox, Google Translate and image search in Google Photos. At a high-level, the technology basically enables such applications to become smarter at what they do over time by continuously learning from previous use and data.

      One example is Google’s image-recognition apps, which Google says are getting increasingly better at recognizing objects with little external help because of machine learning. The company says it has used machine learning to teach a neural network how to recognize images of cats, among other things, from unlabeled images on YouTube.

      The distributed support now available in open-source TensorFlow will give developers an opportunity to train and teach such apps faster than they were able to with the single-processer version of the technology.

      In a blog post this week, Derek Murray, software engineer at Google, said the distributed TensorFlow 0.8 version supports training on hundreds of distributed machines concurrently. Google has used the capability to shorten training times in some cases from weeks to a matter of a few hours. The software has also allowed the company to experiment with increasingly sophisticated and large applications.

      “Ever since we released TensorFlow as an open-source project, distributed training support has been one of the most requested features. Now the wait is over,” Murray said.

      Not all users of TensorFlow are likely to have applications that require hundreds of distributed processors for training. But “even small clusters—or a couple of machines under your desk—can benefit from distributed TensorFlow, since adding more GPUs improves the overall throughput, and produces accurate results sooner,” Murray said.

      Along with TensorFlow 0.8, Google this week also released what it described as a distributed trainer for an image classification technology called Inception. Murray claimed the trainer technology helped Google train its image classification neural network quickly and with a substantial degree of accuracy.

      The distributed version of TensorFlow is just the first of many improvements to the machine learning technology that Google plans to open-source in the future. The company is seeking to improve TensorFlow through engineering and through improvements to the underlying algorithm. Updates, as they become available, will be released through the GitHub code repository, according to Murray.

      While machine learning is a major focus with TensorFlow, the software library can be used in other areas, as Google has previously noted. For instance, the technology is useful for applications involving analysis of extremely large data sets, like those associated with protein folding.

      Jaikumar Vijayan
      Jaikumar Vijayan
      Vijayan is an award-winning independent journalist and tech content creation specialist covering data security and privacy, business intelligence, big data and data analytics.

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      MOST POPULAR ARTICLES

      Artificial Intelligence

      9 Best AI 3D Generators You Need...

      Sam Rinko - June 25, 2024 0
      AI 3D Generators are powerful tools for many different industries. Discover the best AI 3D Generators, and learn which is best for your specific use case.
      Read more
      Cloud

      RingCentral Expands Its Collaboration Platform

      Zeus Kerravala - November 22, 2023 0
      RingCentral adds AI-enabled contact center and hybrid event products to its suite of collaboration services.
      Read more
      Artificial Intelligence

      8 Best AI Data Analytics Software &...

      Aminu Abdullahi - January 18, 2024 0
      Learn the top AI data analytics software to use. Compare AI data analytics solutions & features to make the best choice for your business.
      Read more
      Latest News

      Zeus Kerravala on Networking: Multicloud, 5G, and...

      James Maguire - December 16, 2022 0
      I spoke with Zeus Kerravala, industry analyst at ZK Research, about the rapid changes in enterprise networking, as tech advances and digital transformation prompt...
      Read more
      Video

      Datadog President Amit Agarwal on Trends in...

      James Maguire - November 11, 2022 0
      I spoke with Amit Agarwal, President of Datadog, about infrastructure observability, from current trends to key challenges to the future of this rapidly growing...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2024 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×