Close
  • Latest News
  • Cybersecurity
  • Big Data and Analytics
  • Cloud
  • Mobile
  • Networking
  • Storage
  • Applications
  • IT Management
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Menu
eWEEK.com
Search
eWEEK.com
  • Latest News
  • Cybersecurity
  • Big Data and Analytics
  • Cloud
  • Mobile
  • Networking
  • Storage
  • Applications
  • IT Management
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Home Applications
    • Applications
    • Big Data and Analytics
    • Cloud

    Google Machine Learning Model Rates Aesthetic Qualities of Photos

    By
    JAIKUMAR VIJAYAN
    -
    December 19, 2017
    Share
    Facebook
    Twitter
    Linkedin
      Google

      Google researchers have developed an experimental machine-learning model that they claim can rate photos and images based on their aesthetic qualities rather than purely quantitative ones.

      The proposed model—dubbed Neural Image Assessment (NIMA)—is trained to intelligently predict which images humans are likely to rate as attractive or aesthetically pleasing. Unlike existing aesthetic prediction approaches, which simply categorize images as being of high or low quality, NIMA can rate images with a high degree of correlation to human perception, Google researchers Hossein Talebi and Peyman Milanfar said in a Dec. 19 blog.

      In fact, when rating photos that had also been rated by an average of 200 people, NIMA closely matched the average scores provided by the human raters, the researchers said.

      The model could be put to use in a variety of labor-intensive tasks that require subjective judgment. Potential apps include intelligent photo editing and apps that optimize visual quality or minimize perceived errors in them, the researchers noted.

      NIMA builds on recent work around so-called deep convolutional neural networks (CNN), a machine-learning approach used in applications such as image classification and image recognition. Unlike models that do technical quality assessments of images based on factors such as blurring, pixel-level imperfections and compression, aesthetic assessment focuses on characteristics associated with beauty and emotions in photos.

      The CNN approach uses data that has been previously labeled and rated by human scorers to train machine-learning tools to identify the attributes humans are likely to perceive as being aesthetically pleasing. Some models use what are known as reference, or ideal, images to train machine-learning models on certain quality metrics. When no reference images are available, certain previously developed statistical models are used to predict the quality of an image.

      Instead of classifying an image as just being either high quality or low quality, Google’s “NIMA model produces a distribution of ratings for any given image—on a scale of 1 to 10, NIMA assigns likelihoods to each of the possible scores,” Talebi and Milanfar said. In other words, the model looks at an image and tries to predict the likelihood of human scorers giving it a rating of a 1, or a 5, or a 10, or any other score on a scale of 1 to 10. The result—the mean score—is then used to rate photos aesthetically.

      “This is more directly in line with how training data is typically captured, and it turns out to be a better predictor of human preferences when measured against other approaches,” said the researchers, who published a technical paper describing the work in September.

      Predicted quality scores generated by NIMA have been close to human ratings when the model was used to rank photos in certain tests of its capabilities. “In a direct sense, the NIMA network (and others like it) can act as reasonable, though imperfect, proxies for human taste in photos and possibly videos,” the Google researchers said.

      MOST POPULAR ARTICLES

      Android

      Samsung Galaxy XCover Pro: Durability for Tough...

      CHRIS PREIMESBERGER - December 5, 2020 0
      Have you ever dropped your phone, winced and felt the pain as it hit the sidewalk? Either the screen splintered like a windshield being...
      Read more
      Cloud

      Why Data Security Will Face Even Harsher...

      CHRIS PREIMESBERGER - December 1, 2020 0
      Who would know more about details of the hacking process than an actual former career hacker? And who wants to understand all they can...
      Read more
      Cybersecurity

      How Veritas Is Shining a Light Into...

      EWEEK EDITORS - September 25, 2020 0
      Protecting data has always been one of the most important tasks in all of IT, yet as more companies become data companies at the...
      Read more
      Big Data and Analytics

      How NVIDIA A100 Station Brings Data Center...

      ZEUS KERRAVALA - November 18, 2020 0
      There’s little debate that graphics processor unit manufacturer NVIDIA is the de facto standard when it comes to providing silicon to power machine learning...
      Read more
      Apple

      Why iPhone 12 Pro Makes Sense for...

      WAYNE RASH - November 26, 2020 0
      If you’ve been watching the Apple commercials for the past three weeks, you already know what the company thinks will happen if you buy...
      Read more
      eWeek


      Contact Us | About | Sitemap

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Property of TechnologyAdvice.
      Terms of Service | Privacy Notice | Advertise | California - Do Not Sell My Info

      © 2020 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×