Close
  • Latest News
  • Artificial Intelligence
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Logo
  • Latest News
  • Artificial Intelligence
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Home Cybersecurity
    • Cybersecurity

    Researchers Track Chip Data Flows to Detect Flaw, Potential Trojans

    By
    Robert Lemos
    -
    August 19, 2016
    Share
    Facebook
    Twitter
    Linkedin
      Tracking Chip Flaws 2

      While Moore’s Law has a limit, the steady march of increasingly sophisticated chip designs that incorporate an ever increasing number of transistors on a chip has made designing device controllers and processors more complex.

      As a result, errors can creep into designs, but even more alarming, according to computer scientists, is that it’s possible that a malicious agent in the chip supply chain could insert Trojan horse functionality into processor designs.

      Creating “kill codes” or adding surreptitious surveillance to chip designs may seem like the far-fetched scenario of a good modern thriller, but the capability exists, according to Ryan Kastner, a professor in the department of computer science and engineering at the University of California, San Diego.

      With hardware design frequently an activity that involves global teams, the risk of a compromise in the supply chain is real, Kastner told eWEEK.

      “The designs are super complex. And even when it’s not, it is not easy to figure out the potential issues posed by design choices, even if the same group is developing the entire chip,” he said.

      Academic researchers have focused a great deal of effort to find ways of detecting hardware Trojan horses—devices, chips or modifications to a piece of hardware that allows an attacker access to the device.

      Kastner, along with researchers from Northwestern Polytechnical University and a startup company, Tortuga Logic, has instead focused on the chip-design phase, creating a way of checking a chip design for unexpected functionality. Known as gate-level information-flow tracking, or GLIFT, the technique can detect design anomalies, which could be mistakes made by engineers or malicious modifications made by an adversary.

      Chip designs have millions—and often, billions—of transistors. The A8 chip, which is the main processor for Apple’s iPhone 6, has 2 billion transistors, for example. The Xbox One’s system-on-a-chip boasts 5 billion transistors. Intel’s largest chip—the 22-core Xeon Broadwell-E5—has 7.2 billion.

      Making sure that the designs of those chips—and peripheral components, such as networking and encryption processors—do not have embedded trojan horses is difficult.

      “The modern chip has thousands of ‘lines of code’ that they use to specify a modern chip that gets compiled down to a specification that is sent to the foundry,” Kastner said. “The trojans could be hiding in that code, and because we reuse a lot of code, any malicious changes could be passed along the supply chain.”

      To ferret out potentially malicious changes, the researchers’ technique uses information-flow tracking to identify a piece of information—such as an encryption key or credit-card data—and then see where in the chip that information could flow to based on the design.

      Using the analysis, a designer could specify the security properties of the chip, such as whether a specific piece of data should be allowed to be stored in an untrusted part of the chip or allowed to be communicated to a part of the design made by an untrusted group.

      “If the property is violated, then you know that something weird is happening,” he said. “Maybe it is a bug, but it could be malicious.”

      GLIFT is a technology that is currently being used by Tortuga Logic, to find flaws in client’s chip designs.

      Robert Lemos
      Robert Lemos is an award-winning freelance journalist who has covered information security, cybercrime and technology's impact on society for almost two decades. A former research engineer, he's written for Ars Technica, CNET, eWEEK, MIT Technology Review, Threatpost and ZDNet. He won the prestigious Sigma Delta Chi award from the Society of Professional Journalists in 2003 for his coverage of the Blaster worm and its impact, and the SANS Institute's Top Cybersecurity Journalists in 2010 and 2014.
      Get the Free Newsletter!
      Subscribe to Daily Tech Insider for top news, trends & analysis
      This email address is invalid.
      Get the Free Newsletter!
      Subscribe to Daily Tech Insider for top news, trends & analysis
      This email address is invalid.

      MOST POPULAR ARTICLES

      Latest News

      Zeus Kerravala on Networking: Multicloud, 5G, and...

      James Maguire - December 16, 2022 0
      I spoke with Zeus Kerravala, industry analyst at ZK Research, about the rapid changes in enterprise networking, as tech advances and digital transformation prompt...
      Read more
      Applications

      Datadog President Amit Agarwal on Trends in...

      James Maguire - November 11, 2022 0
      I spoke with Amit Agarwal, President of Datadog, about infrastructure observability, from current trends to key challenges to the future of this rapidly growing...
      Read more
      Cloud

      IGEL CEO Jed Ayres on Edge and...

      James Maguire - June 14, 2022 0
      I spoke with Jed Ayres, CEO of IGEL, about the endpoint sector, and an open source OS for the cloud; we also spoke about...
      Read more
      Applications

      Kyndryl’s Nicolas Sekkaki on Handling AI and...

      James Maguire - November 9, 2022 0
      I spoke with Nicolas Sekkaki, Group Practice Leader for Applications, Data and AI at Kyndryl, about how companies can boost both their AI and...
      Read more
      IT Management

      Intuit’s Nhung Ho on AI for the...

      James Maguire - May 13, 2022 0
      I spoke with Nhung Ho, Vice President of AI at Intuit, about adoption of AI in the small and medium-sized business market, and how...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2022 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×