Close
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Subscribe
Logo
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Subscribe
    Home Innovation
    • Innovation

    Self-Stacking Nanogrids Could Lead to Tinier Chips

    Written by

    Jeff Burt
    Published January 24, 2016
    Share
    Facebook
    Twitter
    Linkedin

      eWEEK content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

      Researchers at MIT have been studying whether molecules called block copolymers can be used as a new way to manufacture processors for memory and optical chips, and possible processors for computers.

      Now, the researchers are outlining a technique for creating what they call “mesh structures” by using block copolymers that can spontaneously self-assemble into particular shapes, a process that could be used to build future chips. The team from the Massachusetts Institute for Technology published its findings in a new paper in the journal Nature Communications.

      “There is previous work on fabricating a mesh structure—for example, our work,” Amir Tavakkoli, a post-doctoral researcher in MIT’s Research Laboratory of Electronics and one of three first authors on the paper, said in a statement. “We used posts that we had fabricated by electron-beam lithography, which is time-consuming. But here, we don’t use the electron-beam lithography. We use the first layer of block copolymer as a template to self-assemble another layer of block copolymer on top of it.”

      The research was funded by the National Science Foundation and chip foundry Taiwan Semiconductor Manufacturing Corp. (TSMC).

      Computer chips for five decades have been built via a process called photolithography, but it has almost run its course, according to the MIT researchers. As the features on processors have shrunk—some have gotten smaller than the wavelength of light—it’s forced manufacturers to continually modify the photolithography process

      To keep up with Moore’s Law, engineers have been looking for new techniques for manufacturing chips. For MIT researchers, that has meant block copolymer, molecules that spontaneously self-assemble into shapes. By stacking layers of block-polymer wires in particular ways, mesh structures can be produced, which could lead to more practical ways for manufacturing chips.

      Polymers are long molecules that comprise basic molecular units that are strung into chains, the researchers said, pointing to plastics and biological molecules—like DNA and protein—as examples. Copolymers are created by joining two different molecules together. To create block copolymers, the polymers that are chosen are chemically incompatible, and as they try to push away from each other, they self-organize.

      The MIT researchers used two polymers, one carbon-based and the other silicon-based. The silicon-based polymers, as they tried to escape from their carbon-based counterparts, folded in on themselves, creating cylinders with loops of silicon-based polymer on the inside and the carbon-based polymer on the outside. Exposing the cylinder to oxygen plasma causes the carbon-based polymer to burn away and the silicon to oxidize, leaving glass-like cylinders attached to a base.

      Researchers created a second layer of cylinders by repeating the process using copolymers with slightly different chain lengths, and the cylinders in the new layer naturally orient themselves perpendicularly to those in the first, creating a mesh structure, they said. If the surface of the first group of cylinders is chemically treated, they will line up in parallel rows, and the second layer of cylinders will then also form parallel rows, again perpendicular to those in the first.

      However, if the cylinders in the bottom layer are allowed to form haphazardly—”snaking out into elaborate, looping patterns,” the researchers said—the second layer will keep their relative orientation, creating their own elaborate, perpendicular patterns. While the orderly mesh structure has applications for which it can be used, the haphazard, disorderly one is “the one the materials scientists are excited about,” Sam Nicaise, a graduate student in electrical engineering at MIT and another co-first author of the paper, said in a statement.

      The glass-like wires by themselves can’t be used directly for electronic applications, but they could be seeded with other types of molecules that can make them electronically active. They also could be used as templates for depositing other materials, the researchers said.

      Jeff Burt
      Jeff Burt
      Jeffrey Burt has been with eWEEK since 2000, covering an array of areas that includes servers, networking, PCs, processors, converged infrastructure, unified communications and the Internet of things.

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      MOST POPULAR ARTICLES

      Artificial Intelligence

      9 Best AI 3D Generators You Need...

      Sam Rinko - June 25, 2024 0
      AI 3D Generators are powerful tools for many different industries. Discover the best AI 3D Generators, and learn which is best for your specific use case.
      Read more
      Cloud

      RingCentral Expands Its Collaboration Platform

      Zeus Kerravala - November 22, 2023 0
      RingCentral adds AI-enabled contact center and hybrid event products to its suite of collaboration services.
      Read more
      Artificial Intelligence

      8 Best AI Data Analytics Software &...

      Aminu Abdullahi - January 18, 2024 0
      Learn the top AI data analytics software to use. Compare AI data analytics solutions & features to make the best choice for your business.
      Read more
      Latest News

      Zeus Kerravala on Networking: Multicloud, 5G, and...

      James Maguire - December 16, 2022 0
      I spoke with Zeus Kerravala, industry analyst at ZK Research, about the rapid changes in enterprise networking, as tech advances and digital transformation prompt...
      Read more
      Video

      Datadog President Amit Agarwal on Trends in...

      James Maguire - November 11, 2022 0
      I spoke with Amit Agarwal, President of Datadog, about infrastructure observability, from current trends to key challenges to the future of this rapidly growing...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2024 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.