Close
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Subscribe
Logo
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Subscribe
    Home Innovation
    • Innovation
    • PC Hardware
    • Servers

    IBM to Spend $3 Billion to Research the Future of Chips, Systems

    Written by

    Jeff Burt
    Published July 10, 2014
    Share
    Facebook
    Twitter
    Linkedin

      eWEEK content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

      IBM will spend $3 billion over the next five years in projects that not only will help to continue to shrink current processor architecture to at least 7 nanometers, but also to fund more research into what will replace the traditional silicon chip architecture when it reaches its physical limitations.

      Chip makers like IBM and Intel for years have been shrinking the circuitry on silicon processors as they’ve looked to improve performance, increase energy efficiency and shrink the size of systems they power. For example, Intel currently offers chips at 22nm, with plans for 14nm next year. IBM officials said that over the next few years, the miniaturization will continue to 10nm and then 7nm.

      However, what’s next beyond that is unclear. Eventually the circuitry will shrink to the point where “you can’t build a reliable device,” Bernie Meyerson, IBM Fellow and vice president of Innovation at the company, told eWEEK. “You can’t make it work.”

      Given that, IBM is working on what might come next and will lead to new system architectures, Meyerson said. Such possibilities run from quantum computing and neurosynaptic computing to carbon nanotubes and graphene.

      What IBM is doing now is something the company has done throughout its history—used its researchers to anticipate major changes in the industry and create solutions to address challenges that may be five or 10 years down the road, he said. Meyerson pointed to the shift to CMOS technology in the late 1980s and early 1990s, and then again at the end of the 1990s when company researchers decided that increasing the frequency of chips was no longer the best way to improve performance and shifted to using multiple cores in processors, releasing the first of its multi-core Power processors at the end of 2001.

      “If you have a research division looking at the horizon all the time, this shouldn’t come as a big surprise,” he said. “We have pretty good headlights. Our headlights go a long way.”

      The transitions to CMOS and multiple cores were moments when IBM “needed to bet the farm,” Meyerson said. This latest move represents a similar moment. “You have to make a bet,” he said.

      The industry for decades has worked to keep up with Moore’s Law, the idea voiced by Intel co-founder Gordon Moore that the number of transistors in chips would double every 18 to 24 months. While many in the chip industry say they are keeping up with Moore’s Law, it’s increasingly difficult to do through the shrinking of the transistors and circuitry. And Meyerson argued that it has “been dead for a decade or so.”

      The challenges are many. Cloud and big data applications are putting pressure on systems for better performance, greater bandwidth capacity and more memory, while businesses also are demanding computers that consume less power. Conventional chip designs will be able to get to 7nm and maybe a little smaller, but beyond that, the challenges and complexities become daunting.

      That’s where the new technologies and materials like carbon nanotubes, graphene and silicon photonics, as well as new computing models like quantum and neuromorphic computing come into play.

      “We needed to make a major investment here to look at the next step, a Plan B,” Meyerson said, adding that IBM already has made progress in many of these areas.

      Quantum computing would enable systems to process millions of calculations at the same time rather than one at a time. In traditional computing, bits can only values of “1” or “0”. However, quantum bits—or “qubits”—can hold values of 1, 0, or both at the same time, opening up the possibility of systems running through millions of calculations simultaneously. Meyerson compared it to communications between humans.

      “It would be frustrating to have a conversation where you could only say ‘yes’ or ‘no,'” he said. “What if you could say ‘maybe’?”

      IBM to Spend $3 Billion to Research the Future of Chips, Systems

      Neurosynaptic computing would involve systems that mirror the human brain in their ability to quickly collect information, analyze data and learn from their mistakes. They not only would mimic the brain’s computing efficiency, but also its size and power usage. IBM officials said the goal is to build such a system that holds 10 billion neurons and 100 trillion synapses, while consuming only a kilowatt of power in a form factor that fits into an area less than two liters in volume. In 2011, IBM unveiled prototypes of such chips.

      Among the possible replacements for silicon chips are carbon nanotubes, which IBM officials described as “single atomic sheets of carbon rolled into a tube.” They would form the basis of a transistor device that will work in a similar fashion as a silicon transistor, but offer greater performance, and could be used in everything from servers, high-performance computing systems and smartphones, the company said.

      Graphene—pure carbon in a one-atomic-layer thick sheet—also could be used to replace silicon and other materials. Electrons can move 10 times faster in graphene than in silicon, and the material could lead to faster switching transistors for such devices as mobile phones. IBM last year demonstrated a graphene-based integrated circuit receiver front-end for wireless communications, the company said.

      IBM isn’t the only top-tier vendor to look at rearchitecting systems. Hewlett-Packard in June unveiled the Machine, an open-source server architecture that will include the company’s memristor memory technology, custom processors, silicon photonics technology and its own operating system. HP executives said the tech industry and its customers are dealing with a tremendous influx of data.

      “This huge and complex amount of data is growing at an exponential rate,” Martin Fink, HP CTO and director of HP Labs, said in a post on the company blog. “We’re all struggling to keep pace today. Toward the end of this decade, data growth will come at us at a rate that surpasses the ability of our current infrastructure to evolve to ingest, store and analyze it. A step change in computing technology is required.”

      IBM’s investment announcement also comes at a time of transition for the company as it looks to sell its low-end x86 server business to Lenovo for $2.3 billion. The deal is expected to close by the end of the year, and IBM will be able to turn more of its attention and money to its Power and mainframe systems. Meyerson said IBM already is incorporating technologies into its processors to help deal with the data growth and new applications. He pointed to the CAPI (Coherent Accelerator Processor Interface) port in the new Power8 chips that can be used to connect specialized processors like graphics chips and field-programmable gateway arrays. Particular workloads can be offloaded onto the specialty chips, increasing the processor’s performance and power efficiency.

      He also noted IBM’s efforts through the IBM Foundation and other programs to promote science and technology education and support such initiatives as STEM (Science Technology Engineering Mathematics) in schools. To address such challenges as new computing architectures, the industry will need more software and hardware engineers, chemists, physicists and biologists, he said.

      “This is massively complex stuff,” Meyerson said. “This is rocket science. … We need a lot of rocket scientists.”

      Jeff Burt
      Jeff Burt
      Jeffrey Burt has been with eWEEK since 2000, covering an array of areas that includes servers, networking, PCs, processors, converged infrastructure, unified communications and the Internet of things.

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      MOST POPULAR ARTICLES

      Artificial Intelligence

      9 Best AI 3D Generators You Need...

      Sam Rinko - June 25, 2024 0
      AI 3D Generators are powerful tools for many different industries. Discover the best AI 3D Generators, and learn which is best for your specific use case.
      Read more
      Cloud

      RingCentral Expands Its Collaboration Platform

      Zeus Kerravala - November 22, 2023 0
      RingCentral adds AI-enabled contact center and hybrid event products to its suite of collaboration services.
      Read more
      Artificial Intelligence

      8 Best AI Data Analytics Software &...

      Aminu Abdullahi - January 18, 2024 0
      Learn the top AI data analytics software to use. Compare AI data analytics solutions & features to make the best choice for your business.
      Read more
      Latest News

      Zeus Kerravala on Networking: Multicloud, 5G, and...

      James Maguire - December 16, 2022 0
      I spoke with Zeus Kerravala, industry analyst at ZK Research, about the rapid changes in enterprise networking, as tech advances and digital transformation prompt...
      Read more
      Video

      Datadog President Amit Agarwal on Trends in...

      James Maguire - November 11, 2022 0
      I spoke with Amit Agarwal, President of Datadog, about infrastructure observability, from current trends to key challenges to the future of this rapidly growing...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2024 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.