Close
  • Latest News
  • Cybersecurity
  • Big Data and Analytics
  • Cloud
  • Mobile
  • Networking
  • Storage
  • Applications
  • IT Management
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Menu
eWEEK.com
Search
eWEEK.com
  • Latest News
  • Cybersecurity
  • Big Data and Analytics
  • Cloud
  • Mobile
  • Networking
  • Storage
  • Applications
  • IT Management
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Home Big Data and Analytics
    • Big Data and Analytics

    Eight Reasons Machine Learning Isn’t Mainstream in the Enterprise

    By
    CHRIS PREIMESBERGER
    -
    May 2, 2018
    Share
    Facebook
    Twitter
    Linkedin

      PrevNext

      1Eight Reasons Machine Learning Isn’t Mainstream in the Enterprise

      Eight Reasons Machine Learning Isn't Mainstream in the Enterprise

      Machine learning has made huge strides in recent years. It’s helped Netflix perfect binge watching, taught Siri how to sound more human and matched people’s selfies with famous pieces of art. But when it comes to machine learning use cases for the enterprise, it gets a whole lot more complicated. It’s easy to apply an algorithm to a one-off use case, but comprehensive enterprise applications of machine learning don’t exist today. In this eWEEK slide show, J.F. Huard, CTO of Data Science at AppDynamics, outlines the top eight challenges standing in the way of widespread adoption of machine learning in the enterprise.

      2Confusion Over What Constitutes Machine Learning

      Confusion Over What Constitutes Machine Learning

      Part of the problem is a lack of understanding around what machine learning is. Machine learning is really about applying mathematics to different domains. It locates meaning within extremely large volumes of data by canceling out the noise.

      3Uncertainty About What Machine Learning Can Do

      Uncertainty About What Machine Learning Can Do

      Machine learning algorithms don’t enter chess tournaments. What they are really good at is adapting to changing systems without human intervention while continuing to differentiate between expected and anomalous behavior. This makes machine learning useful in all kinds of applications—think everything from security to health care—as well as classification and recommendation engines and voice and image identification systems. 

      4Getting Started Can Be Daunting

      Getting Started Can Be Daunting

      Machine learning is usually introduced into an enterprise in one of two ways. The first is that one or two employees start applying machine learning to gain insight into data they already have access to. The second is by purchasing a solution, such as security software or an application performance management solution, that uses machine learning. 

      5The Challenge of Data Preparation

      The Challenge of Data Preparation

      Machine learning isn’t as easy as simply collecting data and running it through some algorithms. Once you collect the data, then you have to aggregate it, determine if there are any problems with it and make sure it’s able to adapt to missing data, outlying data, garbage data and data that’s out of sequence.

      6The Lack of Publicly Labeled Datasets

      The Lack of Publicly Labeled Datasets

      The availability of publicly labeled datasets would make it much easier for companies to get started with machine learning. Unfortunately, these do not yet exist, and without them, most companies are looking at a “cold start.” 

      7The Need for Domain Knowledge

      The Need for Domain Knowledge

      At its best, machine learning represents the perfect marriage between an algorithm and a problem. This means domain knowledge is a prerequisite for effective machine learning, but there is no off-the-shelf way to obtain domain knowledge. It is built up in organizations over time and includes not just the inner workings of specific companies and industries but the IT systems they use and the data that is generated by them. 

      8Hiring Brilliant Data Scientists Is Not a Panacea

      Hiring Brilliant Data Scientists Is Not a Panacea

      Most data scientists are mathematicians. Depending on their previous job experience, they may have zero domain knowledge that is relevant to their employer’s business. They need to be paired up with analysts and domain experts, which increases the cost of any machine learning project.

      9Machine Learning Lacks a Shared Vocabulary

      Machine Learning Lacks a Shared Vocabulary

      One of the challenges encountered by organizations with machine learning initiatives is the lack of conventions around communicating findings. They end up with silos of people, each with their own definition of input and their own approach to sampling data. Consequently, they end up with wildly different results. This makes it difficult to inspire confidence in machine learning initiatives and will slow adoption until it is addressed.

      PrevNext

      MOST POPULAR ARTICLES

      Android

      Samsung Galaxy XCover Pro: Durability for Tough...

      CHRIS PREIMESBERGER - December 5, 2020 0
      Have you ever dropped your phone, winced and felt the pain as it hit the sidewalk? Either the screen splintered like a windshield being...
      Read more
      Cloud

      Why Data Security Will Face Even Harsher...

      CHRIS PREIMESBERGER - December 1, 2020 0
      Who would know more about details of the hacking process than an actual former career hacker? And who wants to understand all they can...
      Read more
      Cybersecurity

      How Veritas Is Shining a Light Into...

      EWEEK EDITORS - September 25, 2020 0
      Protecting data has always been one of the most important tasks in all of IT, yet as more companies become data companies at the...
      Read more
      Big Data and Analytics

      How NVIDIA A100 Station Brings Data Center...

      ZEUS KERRAVALA - November 18, 2020 0
      There’s little debate that graphics processor unit manufacturer NVIDIA is the de facto standard when it comes to providing silicon to power machine learning...
      Read more
      Apple

      Why iPhone 12 Pro Makes Sense for...

      WAYNE RASH - November 26, 2020 0
      If you’ve been watching the Apple commercials for the past three weeks, you already know what the company thinks will happen if you buy...
      Read more
      eWeek


      Contact Us | About | Sitemap

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Property of TechnologyAdvice.
      Terms of Service | Privacy Notice | Advertise | California - Do Not Sell My Info

      © 2020 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×