Close
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Subscribe
Logo
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Subscribe
    Home Applications
    • Applications
    • Big Data and Analytics
    • Cloud
    • IT Management

    Elon is Right, AI is Hard: Five Pitfalls to Avoid in Artificial Intelligence

    To succeed with the complexity of an AI deployment, organizations must fully commit to best practices – and watch out for these five pitfalls.

    Written by

    eWEEK EDITORS
    Published September 14, 2021
    Share
    Facebook
    Twitter
    Linkedin

      eWEEK content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

      During the recent Tesla AI Day event, Elon Musk said he discourages “machine learning, because it is really difficult. Unless you have to use machine learning, don’t do it.”

      Well, Musk may be right in his assessment, because machine learning is quite difficult to implement. Most companies desire the benefits of what artificial intelligence can achieve for their business, but most don’t have what it takes to get it up and running. Therefore, as much as 85% of ML projects currently fail.

      The takeaway from Musk’s startling statement is that organizations can’t treat AI, of which machine learning is a subset, like a part-time project. Many businesses are making some important mistakes when trying to do AI. But it doesn’t have to be this way. Below are five data points from Bin Zhao, Ph.D., Lead Data Scientist at Datatron, showing some common mistakes of AI implementation.

      1. Careful: this isn’t traditional software development

      Don’t treat AI/ML development like traditional software development. Developing AI/ML models is a much different process than software development, but many organizations try to apply the traditional software development lifecycle to manage AI/ML models.

      Machine Learning development lifecycle (MLLC) takes much more time because of additional factors including translating AI algorithms to compatible software codes, unique infrastructure requirements, the need for frequent model iterations, and more. Compared to traditional programming languages, it can take more than five times as long. This means today’s typical application release processes are simply not applicable.

      2. Using or standardizing the wrong tools can hamper data scientists’ productivity

      This type of tools mistake introduces unnecessary delays and inefficiencies. In most IT situations, organizations can control the types of servers they buy, the software tools they use, the dependencies they build with and so on.

      Not so with AI/ML; organizations must allow their data scientists to use their preferred tools based on what they think will get the job done in the best way. Otherwise, they’re likely to see all their data scientists leave.

      3. IT/DevOps staff can lack ML expertise

      DevOps is the union of software development and operations with the goals of reducing solution delivery time and sustaining a good user experience through automation (e.g. CI/CD and monitoring). But DevOps experts don’t know the nuances of working with ML models.

      MLOps is a new term that expresses how to apply DevOps rules to automate the building, testing and deployment of ML systems. The goal of MLOps is to unite ML application development and the operation of ML applications, making it easier for groups to deploy finer models more often.

      4. Beware of the misalignment of the skill sets of data scientists

      Data scientists need the right raw data for modeling, and they excel in uncovering data to build the best models to solve business challenges. However, that does not mean they are experts in all the intricacies of deploying models to work with existing applications and infrastructure. This causes friction between them and the engineering team and business leaders, resulting in low job satisfaction for data scientists.

      Though highly skilled and trained, they must rely on others for deployment and production, which also means that they can’t iterate rapidly. And since the projects shift to the engineering team, who don’t have the ML skill set, it’s easy for them to miss details – especially if the model is not making accurate predictions.

      5. Don’t get too caught up in the romance of academic AI research vs. business reality

      Academic AI research has historically focused on developing models and algorithms. Limited efforts have been devoted towards iterating and improving data sets for a specific business problem, operationalizing a machine learning model or monitoring models in production.

      Building and deploying a machine learning model for solving a real world problem is much more than developing the algorithm itself.

      A sound plan for ML success

      Operationalizing ML models is hard but not impossible. Using a new model development life cycle will streamline the process of model development and model production. It does this by helping data scientists, engineering and other involved teams make effective decisions in a timely manner. It will also help teams to reduce production risks. A successful model governance tool can also help by standardizing processes, simplifying governance and significantly reducing risks.

      About the Author:

      Bin Zhao, Ph.D., Lead Data Scientist at Datatron

      eWEEK EDITORS
      eWEEK EDITORS
      eWeek editors publish top thought leaders and leading experts in emerging technology across a wide variety of Enterprise B2B sectors. Our focus is providing actionable information for today’s technology decision makers.

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      MOST POPULAR ARTICLES

      Artificial Intelligence

      9 Best AI 3D Generators You Need...

      Sam Rinko - June 25, 2024 0
      AI 3D Generators are powerful tools for many different industries. Discover the best AI 3D Generators, and learn which is best for your specific use case.
      Read more
      Cloud

      RingCentral Expands Its Collaboration Platform

      Zeus Kerravala - November 22, 2023 0
      RingCentral adds AI-enabled contact center and hybrid event products to its suite of collaboration services.
      Read more
      Artificial Intelligence

      8 Best AI Data Analytics Software &...

      Aminu Abdullahi - January 18, 2024 0
      Learn the top AI data analytics software to use. Compare AI data analytics solutions & features to make the best choice for your business.
      Read more
      Latest News

      Zeus Kerravala on Networking: Multicloud, 5G, and...

      James Maguire - December 16, 2022 0
      I spoke with Zeus Kerravala, industry analyst at ZK Research, about the rapid changes in enterprise networking, as tech advances and digital transformation prompt...
      Read more
      Video

      Datadog President Amit Agarwal on Trends in...

      James Maguire - November 11, 2022 0
      I spoke with Amit Agarwal, President of Datadog, about infrastructure observability, from current trends to key challenges to the future of this rapidly growing...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2024 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×