Close
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Subscribe
Logo
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Subscribe
    Home Cloud
    • Cloud

    Understanding the Scale Limitations of Graph Databases

    As graph database adoption accelerates, new data infrastructures will emerge to eliminate many of the scale struggles of graph database models.

    Written by

    eWEEK EDITORS
    Published May 26, 2022
    Share
    Facebook
    Twitter
    Linkedin

      eWEEK content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

      Graph databases and models have been around for well over a decade, and are among the most impactful technologies to emerge from the NoSQL movement.

      Graph data models are natively designed to focus on the relationships within and between data, representing data as nodes connected by edges. As such, the graph model is strikingly similar to the way humans often think and talk.

      The node-edge-node pattern in a graph corresponds directly to the subject-predicate-object pattern common to languages like English. So, if you’ve ever used mind-mapping technology or diagrammed ideas on a whiteboard, you’ve created a graph.

      Graph data models have become part of the standard toolkit for data scientists applying artificial intelligence (AI) to everything from fraud detection and manufacturing control systems to recommendation engines and customer 360s.

      Given this broad applicability, it’s no surprise Gartner believes that graph database technologies will be used in more than 80% of data and analytics innovations, including real-time event streaming, by 2025. But as adoption accelerates, limitations and challenges are emerging. And one of the most significant limitations graph databases face is their inability to scale.

      Also see: Real Time Data Management Trends

      Volume and Velocity of Modern Data Generation

      Much has changed since the emergence of the most recent generation of graph databases from a decade ago. Enterprises are dealing with previously unimaginable volumes of data to potentially query. That data enters and streams through the enterprise in a variety of channels, and enterprises want action on that information in real time.

      Original graph designs couldn’t have imagined today’s sheer volume of data or the computation power needed to put that data to work. And it’s not just the volume of data dragging graph databases down. It’s the velocity of that data.

      While graph databases can excel at computation on moderately-sized sets of data at rest, they get especially siloed and suffer significant tradeoffs when real-time actions on streaming data are desired. Streaming is actively moving data; it constantly arrives from diverse sources.

      And enterprises want to act upon it immediately in event-processing pipelines because when certain events are not caught quickly, as they happen, the opportunity to act disappears. For example, security incidents, transaction processing (such as fraud or credit validations), and automated machine-to-machine actions.

      Anomalies and patterns need to be recognized with AI and ML algorithms that can automate (or at least escalate) an action. And that recognition needs to occur before an automated action can proceed.

      Graph databases were simply never built for this scenario. They are typically restricted to hundreds or thousands of events per second. But today’s enterprises need to be able to process a velocity of millions of events per second and, in some advanced use cases, tens of millions.

      There’s a hard limit both on how quickly graph systems can process data and on how much complexity (like how many hops in the query) they can handle. Because of those limits, graph systems often don’t get used. Since graph systems don’t get used, data engineering teams have no option other than to recreate the graph database-like functionality spread throughout their microservices architecture.

      Also see: Best Data Analytics Tools 

      The Rise of Custom Data Pipeline Development

      These workarounds to query the event streams in real time require significant effort. Developers typically turn to event stream processing systems like Flink and ksqlDB, which make it possible, but not easy, to use familiar SQL query syntax to query the event streams.

      It’s not uncommon for enterprises to have teams of data engineers developing extensive and complex microservice architectures for months or years to get up to the scale and speed needs of streaming data. However, these systems tend to lack the expressive query structures needed to find complex patterns in streams efficiently.

      As noted, to operate at the volume and velocity that enterprises require, these systems have had to make tough tradeoffs that lead to significant limitations.

      For example, time windows can restrict a system’s ability to connect events that do not arrive within a narrow time interval (often measured in seconds or minutes). This means that rather than providing some critical insight or business value, an event is instead simply ignored if it arrives even seconds too late.

      Even with costly limitations like time windows, event stream processing systems have been successful. Many can even scale to process millions of events per second—but with significant effort and limitations that fail to deliver the full power of graph data models.

      Also see: Why Cloud Means Cloud Native

      Innovation Will Rise to Meet Demand

      The demand for insights from instant event data streams and the value they deliver has never been higher. As adoption accelerates, businesses should expect to see new data infrastructure emerge to eliminate many of the scale struggles that can hold back the power of graph database models.

      About the Author: 

      Rob Malnati is the COO of thatDot

      eWEEK EDITORS
      eWEEK EDITORS
      eWeek editors publish top thought leaders and leading experts in emerging technology across a wide variety of Enterprise B2B sectors. Our focus is providing actionable information for today’s technology decision makers.

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      MOST POPULAR ARTICLES

      Artificial Intelligence

      9 Best AI 3D Generators You Need...

      Sam Rinko - June 25, 2024 0
      AI 3D Generators are powerful tools for many different industries. Discover the best AI 3D Generators, and learn which is best for your specific use case.
      Read more
      Cloud

      RingCentral Expands Its Collaboration Platform

      Zeus Kerravala - November 22, 2023 0
      RingCentral adds AI-enabled contact center and hybrid event products to its suite of collaboration services.
      Read more
      Artificial Intelligence

      8 Best AI Data Analytics Software &...

      Aminu Abdullahi - January 18, 2024 0
      Learn the top AI data analytics software to use. Compare AI data analytics solutions & features to make the best choice for your business.
      Read more
      Latest News

      Zeus Kerravala on Networking: Multicloud, 5G, and...

      James Maguire - December 16, 2022 0
      I spoke with Zeus Kerravala, industry analyst at ZK Research, about the rapid changes in enterprise networking, as tech advances and digital transformation prompt...
      Read more
      Video

      Datadog President Amit Agarwal on Trends in...

      James Maguire - November 11, 2022 0
      I spoke with Amit Agarwal, President of Datadog, about infrastructure observability, from current trends to key challenges to the future of this rapidly growing...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2024 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×