Close
  • Latest News
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Logo
  • Latest News
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Home Database
    • Database

    IBM Research Launches New Big Data Lab

    By
    Darryl K. Taft
    -
    October 11, 2013
    Share
    Facebook
    Twitter
    Linkedin

      IBM Research has opened a new lab focused specifically on big data.

      On Oct. 10, IBM announced the Accelerated Discovery Lab, a new collaborative environment targeted at helping clients find unknown relationships from disparate data sets. Some of the industry applications being considered at the new lab are drug development, social analytics and predictive maintenance.

      IBM officials said the new workspace includes access to diverse data sources; unique research capabilities for analytics such as domain models; text analytics and natural language processing capabilities derived from IBM’s Watson supercomputer; a potent hardware and software infrastructure; and broad domain expertise including biology, medicine, finance, weather modeling, mathematics, computer science and information technology. This combination reduces time to insight, resulting in business impact—cost savings, revenue generation and scientific impact—ahead of the traditional pace of discovery, IBM said.

      IBM said each day society creates 2.5 quintillion bytes of data generated by a variety of sources—from climate information to posts on social media sites to purchase transaction records to health care medical images. Big data and analytics are a catalyst to help organizations become more competitive and drive growth, according to IBM. The company is helping its customers harness this big data to uncover valuable insights and transform their business. IBM also says it has established the world’s deepest and broadest portfolio of big data technologies and solutions, spanning services, software, research and hardware.

      The notion of Moore’s Law for big data has less to do with how fast data is growing, and more with how many connections one can make with that data and how fast those connections are growing, IBM said. While companies could utilize data scientists to analyze their own information, they may miss insights that can only be found by bringing their understanding together with other experts, data sources and tools to create different context and discover new value in their big data.

      “If we think about big data today, we mostly use it to find answers and correlations to ideas that are already known,” said Jeff Welser, director of strategy and program development at IBM Research Accelerated Discovery Lab. “Increasingly what we need to do is figure out ways to find things that aren’t known within that data. Whether it’s through exploring thousands of public government databases, searching every patent filing in the world, including text and chemical symbols, to develop new drugs or mixing social media and psychology data to determine intrinsic traits, there’s a big innovation opportunity if companies are able to accelerate discovery by merging their own assets with contextual data.”

      IBM Research Launches New Big Data Lab

      Leveraging the best research and product technologies for analytics on a scalable platform, the new Accelerated Discovery Lab empowers subject matter experts to quickly identify and work with assets such as datasets, analytics and other tools of interest relevant to their project. At the same time, it encourages collaboration across projects and domains to spark serendipitous discovery by applying nonproprietary assets to subsequent projects. This collaboration can occur whether the experts are co-located in the same physical location or are geographically distributed but working within the same system infrastructure.

      “The history of computing shows that systems commoditize over time,” said Laura Haas, IBM Fellow and director of technology and operations at IBM Research Accelerated Discovery Lab, in a statement. “Moving forward, people and systems together will do more than either could do on their own. Our environment will provide critical elements of discovery that allow domain experts to focus on what they do best, and will couple them with an intelligent software partner that learns continuously, increasing in value over time.”

      IBM said the process of drug discovery today spans an average of 12 to 15 years, with billions of dollars invested per drug, and a 90-plus percent fallout rate. Working primarily with pharmaceutical companies, IBM Research is using machine-based discovery technology to mine millions of published papers, patents and material properties databases. Then using advanced analytics, modeling and simulation to aid human discovery, IBM is able to predict where to make the most profitable research bets.

      The inability to discover the next “new thing” quickly is a huge shortcoming faced by companies today across multiple industries, including retail, medicine and consumer goods. A diverse set of skills and tools was needed to integrate and analyze these many sources of data, from deep domain knowledge of chemistry, biology and medicine to data modeling and knowledge representation to systems optimization. The data sets, skills and infrastructure provided by the Accelerated Discovery Lab not only enable this work, but also are allowing the reuse of the tools in domains from materials discovery to cancer research, IBM said.

      Regarding social analytics, marketers gather terabytes of data on potential customers, spend billions of dollars on software to analyze spending habits and segment the data to calibrate their campaigns to appeal to specific groups. Yet they still often get it wrong because they study demographics such as age, sex, marital status, dwelling place, income and existing buying habits instead of personality, fundamental values and needs. Recognizing this, scientists at IBM Research are helping businesses understand their customers in entirely new ways using terabytes of public social media data.

      IBM is able to understand and segment personalities and buying patterns from vast amounts of noisy social media data and do so automatically, reliably and after as few as 50 tweets, the company said. This is data that marketers never had before, permitting much more refined marketing than traditional approaches based on demographics and purchase history alone. The Accelerated Discovery Lab brought together the expertise in text analytics, human-computer interaction, psychology and large-scale data processing to enable these new insights. Because clients from multiple industries including retail, government, media and banking are exploring different applications of social analytics in this common environment, the opportunities for unexpected discoveries abound as new analytics are applied to diverse challenges.

      IBM also is helping companies save money with predictive maintenance. Natural resources industries, such as oil and gas, mining and agriculture, depend on the effectiveness and productivity of expensive equipment. Most maintenance processes result in costly in-field failures, which can cost a company $1.5 million for one day of downtime on a single piece of equipment. To have a real bottom-line impact, analytics and modeling need to be integrated with current processes.

      IBM developed an intelligent condition monitoring technology using a comprehensive data set assembled in this domain. This system proactively presents decision support information to drive actions that reduce downtime, increase fleet productivity and minimize maintenance costs—in fact, one estimate suggests that a $30 billion company can save $3 billion a year by implementing predictive maintenance technology. The Accelerated Discovery Lab brought together experts in the domain, the systems, and mathematical modeling and provided systems infrastructure and expertise that freed the domain researchers and mathematicians to focus on the client problem and sped up the execution of the resulting models by a factor of 8, IBM said.

      Darryl K. Taft
      Darryl K. Taft covers the development tools and developer-related issues beat from his office in Baltimore. He has more than 10 years of experience in the business and is always looking for the next scoop. Taft is a member of the Association for Computing Machinery (ACM) and was named 'one of the most active middleware reporters in the world' by The Middleware Co. He also has his own card in the 'Who's Who in Enterprise Java' deck.

      MOST POPULAR ARTICLES

      Big Data and Analytics

      Alteryx’s Suresh Vittal on the Democratization of...

      James Maguire - May 31, 2022 0
      I spoke with Suresh Vittal, Chief Product Officer at Alteryx, about the industry mega-shift toward making data analytics tools accessible to a company’s complete...
      Read more
      Cybersecurity

      Visa’s Michael Jabbara on Cybersecurity and Digital...

      James Maguire - May 17, 2022 0
      I spoke with Michael Jabbara, VP and Global Head of Fraud Services at Visa, about the cybersecurity technology used to ensure the safe transfer...
      Read more
      Applications

      Cisco’s Thimaya Subaiya on Customer Experience in...

      James Maguire - May 10, 2022 0
      I spoke with Thimaya Subaiya, SVP and GM of Global Customer Experience at Cisco, about the factors that create good customer experience – and...
      Read more
      Big Data and Analytics

      GoodData CEO Roman Stanek on Business Intelligence...

      James Maguire - May 4, 2022 0
      I spoke with Roman Stanek, CEO of GoodData, about business intelligence, data as a service, and the frustration that many executives have with data...
      Read more
      Cloud

      Yotascale CEO Asim Razzaq on Controlling Multicloud...

      James Maguire - May 5, 2022 0
      Asim Razzaq, CEO of Yotascale, provides guidance on understanding—and containing—the complex cost structure of multicloud computing. Among the topics we covered:  As you survey the...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2022 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×