Close
  • Latest News
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Logo
  • Latest News
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Home Innovation
    • Innovation

    Self-Stacking Nanogrids Could Lead to Tinier Chips

    By
    Jeff Burt
    -
    January 24, 2016
    Share
    Facebook
    Twitter
    Linkedin
      Copolymers MIT

      Researchers at MIT have been studying whether molecules called block copolymers can be used as a new way to manufacture processors for memory and optical chips, and possible processors for computers.

      Now, the researchers are outlining a technique for creating what they call “mesh structures” by using block copolymers that can spontaneously self-assemble into particular shapes, a process that could be used to build future chips. The team from the Massachusetts Institute for Technology published its findings in a new paper in the journal Nature Communications.

      “There is previous work on fabricating a mesh structure—for example, our work,” Amir Tavakkoli, a post-doctoral researcher in MIT’s Research Laboratory of Electronics and one of three first authors on the paper, said in a statement. “We used posts that we had fabricated by electron-beam lithography, which is time-consuming. But here, we don’t use the electron-beam lithography. We use the first layer of block copolymer as a template to self-assemble another layer of block copolymer on top of it.”

      The research was funded by the National Science Foundation and chip foundry Taiwan Semiconductor Manufacturing Corp. (TSMC).

      Computer chips for five decades have been built via a process called photolithography, but it has almost run its course, according to the MIT researchers. As the features on processors have shrunk—some have gotten smaller than the wavelength of light—it’s forced manufacturers to continually modify the photolithography process

      To keep up with Moore’s Law, engineers have been looking for new techniques for manufacturing chips. For MIT researchers, that has meant block copolymer, molecules that spontaneously self-assemble into shapes. By stacking layers of block-polymer wires in particular ways, mesh structures can be produced, which could lead to more practical ways for manufacturing chips.

      Polymers are long molecules that comprise basic molecular units that are strung into chains, the researchers said, pointing to plastics and biological molecules—like DNA and protein—as examples. Copolymers are created by joining two different molecules together. To create block copolymers, the polymers that are chosen are chemically incompatible, and as they try to push away from each other, they self-organize.

      The MIT researchers used two polymers, one carbon-based and the other silicon-based. The silicon-based polymers, as they tried to escape from their carbon-based counterparts, folded in on themselves, creating cylinders with loops of silicon-based polymer on the inside and the carbon-based polymer on the outside. Exposing the cylinder to oxygen plasma causes the carbon-based polymer to burn away and the silicon to oxidize, leaving glass-like cylinders attached to a base.

      Researchers created a second layer of cylinders by repeating the process using copolymers with slightly different chain lengths, and the cylinders in the new layer naturally orient themselves perpendicularly to those in the first, creating a mesh structure, they said. If the surface of the first group of cylinders is chemically treated, they will line up in parallel rows, and the second layer of cylinders will then also form parallel rows, again perpendicular to those in the first.

      However, if the cylinders in the bottom layer are allowed to form haphazardly—”snaking out into elaborate, looping patterns,” the researchers said—the second layer will keep their relative orientation, creating their own elaborate, perpendicular patterns. While the orderly mesh structure has applications for which it can be used, the haphazard, disorderly one is “the one the materials scientists are excited about,” Sam Nicaise, a graduate student in electrical engineering at MIT and another co-first author of the paper, said in a statement.

      The glass-like wires by themselves can’t be used directly for electronic applications, but they could be seeded with other types of molecules that can make them electronically active. They also could be used as templates for depositing other materials, the researchers said.

      Jeff Burt
      Jeffrey Burt has been with eWEEK since 2000, covering an array of areas that includes servers, networking, PCs, processors, converged infrastructure, unified communications and the Internet of things.

      MOST POPULAR ARTICLES

      Cybersecurity

      Visa’s Michael Jabbara on Cybersecurity and Digital...

      James Maguire - May 17, 2022 0
      I spoke with Michael Jabbara, VP and Global Head of Fraud Services at Visa, about the cybersecurity technology used to ensure the safe transfer...
      Read more
      Cloud

      Yotascale CEO Asim Razzaq on Controlling Multicloud...

      James Maguire - May 5, 2022 0
      Asim Razzaq, CEO of Yotascale, provides guidance on understanding—and containing—the complex cost structure of multicloud computing. Among the topics we covered:  As you survey the...
      Read more
      Big Data and Analytics

      GoodData CEO Roman Stanek on Business Intelligence...

      James Maguire - May 4, 2022 0
      I spoke with Roman Stanek, CEO of GoodData, about business intelligence, data as a service, and the frustration that many executives have with data...
      Read more
      IT Management

      Intuit’s Nhung Ho on AI for the...

      James Maguire - May 13, 2022 0
      I spoke with Nhung Ho, Vice President of AI at Intuit, about adoption of AI in the small and medium-sized business market, and how...
      Read more
      Applications

      Cisco’s Thimaya Subaiya on Customer Experience in...

      James Maguire - May 10, 2022 0
      I spoke with Thimaya Subaiya, SVP and GM of Global Customer Experience at Cisco, about the factors that create good customer experience – and...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2021 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×