Close
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Logo
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Home Latest News
    • Mobile
    • Networking

    The 100-Million-Mile Network

    Written by

    David F. Carr
    Published February 6, 2004
    Share
    Facebook
    Twitter
    Linkedin

      eWEEK content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

      Eighteen days after landing on Mars, the robotic explorer named Spirit squawked in distress and went silent for nearly 24 hours.

      Listening anxiously for any sign of life were navigators at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif. They had to fix a broken interplanetary communications link that reached more than 100 million miles (and counting-the distance keeps growing as the orbits of Earth and Mars draw apart).

      “The most difficult thing is to know how to talk to the spacecraft when youre getting no response from it,” says Douglas J. Mudgway, a former National Aeronautics and Space Administration (NASA) engineer who managed communications with the Viking landers in the 1970s and helped save the Galileo mission in the early 1990s.

      Spirit was exploring the Gusev crater on Mars on Jan. 21, and was already sending back spectacular photographic images. The wandering robot had rolled out of its landing nets and had approached a rock to take measurements using an appendage called the Rock Abrasion Tool.

      Diagnosing what was wrong with Spirit depended on interpreting squawks, tones and other sounds traveling along a conduit dubbed the Deep Space Network.

      Operators of this interplanetary signaling system send commands to and listen for data from “nodes” such as Spirit and its twin rover, Opportunity, using three facilities spaced roughly one-third of the way around Earth apart from each other. These communications complexes are in Goldstone, Calif.; near Madrid, Spain; and near Canberra, Australia.

      This geographic separation means that, as the Earth rotates, at least one of these listening posts will be able to point its antennae toward the spacecraft being tracked at any given moment. Designed much like radio telescopes, the antennae are parabolic dishes as large as 70 meters in diameter (although the trend for the future is to use arrays of smaller antennas).

      /zimages/5/28571.gifCheck out eWEEK.coms Wireless Center at http://wireless.eweek.com for the latest news, views and analysis on wireless communication.

      During normal operations, the rovers communicate directly with Earth when receiving instructions or sending back diagnostic information. They send back the bulk of their scientific data and photographs by using NASAs Mars Odyssey and Mars Global Surveyor probes as relay stations. These unmanned craft orbit the red planet carrying cameras, high-gain and ultra-high-frequency (UHF) antennae along with other scientific instruments.

      The omnidirectional mast antenna sticking up from each rovers top like a dorsal fin knows when to transmit by listening for a signal that one of the orbiters is passing overhead. The orbiter then uses its more-powerful antenna to send as many as one million bits of data per second back to Earth. While fairly fast for an attenuated radio connection, thats only about a tenth of the speed of a cable-modem connection for the average home-computer user.

      The rover-to-orbiter link uses UHF radio-the same basic technology used for broadcasting channels 14 and higher to television sets in the United States-while long-haul communications to Earth use X-band radio, which is a higher frequency (about 8 gigahertz) and easier to focus into a tight beam.

      For critical commands, the rovers do communicate directly with Earth over X-band. Each rover has directional antennae that provide relatively strong signals that make it easier for the ground stations on Earth to filter out space noise and terrestrial interference. The omnidirectional antenna can also send and receive X-band when the directional one is not aimed properly.

      Despite all this radio power, its not unusual for a connection to be lost, at least temporarily. When Spirit landed the night of Jan. 3, the cheering in the JPL control room-over a series of simple radio tones indicating the lander had survived its fiery descent and dropped to the surface within a protective cluster of airbags-abruptly ended with the announcement, “We currently do not have signal from the spacecraft.”

      Next Page: Cosmic cheering resumes.

      Cosmic Cheering Resumes



      Cosmic Cheering Resumes
      For 15 nail-biting minutes, everyone from NASA Administrator Sean OKeefe to the most junior member of the Mars Exploration Rover project waited for the signal indicating the lander was still alive. The cheering resumed when the signal came.

      Spirits outage weeks after that brief silence left engineers guessing. JPL engineers could keep sending new commands to the rover, but they had no way of knowing whether it was listening or whether new instructions might do more harm than good.

      Often, a communications breakdown spells the end of a mission, as appears to be the case for the European Space Agencys Beagle 2 Mars lander, which failed to radio back after touchdown in December. On the other hand, the rovers are designed to be as autonomous and resilient as possible, meaning that they will try to debug their own problems and radio diagnostic information back to Earth even if they are not receiving commands.

      For Joseph Wackley, the Deep Space Networks mission system operations manager, the silence meant he had to fortify the network to make sure Spirits signal would not be missed when-or if-it came. NASA brought on additional staff and powered up onsite generators to guarantee that antennae would be up and running.

      “Thats exactly the nightmare,” says Wackley, who was at a Pasadena facility of subcontractor ITT Industries the night Spirit landed. “We have to make sure its not us contributing to why they are not seeing the signals.”

      /zimages/5/28571.gifCheck out eWEEK.coms Server and Networking Center at http://networking.eweek.com for the latest news, views and analysis on server hardware and networking technolgies.

      When trying to regain a connection, the Deep Space Network puts its reception equipment in a “closed-loop” mode, continually scanning a range of frequencies around the expected one, looking for some kind of signal that it could “lock on” to. The closed-loop mode kicked in for the 15 silent minutes during Spirits landing and again in the latest communications crisis.

      JPL finally caught a break Jan. 23. After several rounds of sending instructions that were not acknowledged, JPL received a transmission Spirit sent on its own initiative. But engineers still had trouble getting Spirit to respond to commands or send back intelligible data. One communications session relayed via the Surveyor orbitor picked up static, as if the UHF antenna had been left on but wasnt controlled by Spirits computer.

      Gradually, JPL was able to rebuild the communications link through trial and error.

      Where project manager Pete Theisinger originally told a press conference some electrical or mechanical failure was suspected, the investigation subsequently indicated a software-only problem.

      It turned out the rover had become trapped in a cycle of continual reboots, crashing each time it tried to access the two flash-memory devices it uses for storage of images and other data. The cycle of some 60 reboots over 30 hours also prevented Spirit from going to sleep overnight when no solar power was available, causing it to run down its batteries.

      To get the robots software to work normally, JPL had to disable the flash-memory devices so the onboard computer would boot using only Random Access Memory (RAM), which stores information for active use by a computer only when power is present.

      But this left Spirit operating in a crippled state, since data held in RAM evaporates when a computer is powered down. Like a digital camera, the rover uses flash memory for temporary storage of data to be sent to Earth later. But apparently the scientists had hoarded data too aggressively, filling flash storage with data collected during the cruise between Earth and Mars as well as data from the surface exploration. Eventually, just keeping track of all those files consumed so much memory that Spirits software was unable to function normally.

      Next Page: Solving Spirits crippled state of operations.

      Solving Operations

      Solving Operations
      The solution: Delete excess files and send a patch instructing the rovers how to use their flash and random memories more conservatively.

      This patch was also sent to the second rover, Opportunity, which had meanwhile experienced a flawless landing on Jan. 24. That mobile explorer maintained communications with Earth even while it was bouncing to a stop. Then it flipped itself upright and began sending back images from its 20-megapixel stereo cameras.

      By the end of January, the Mars exploration programs head scientist, Steve Squyres, said he was optimistic both rovers ultimately will work well beyond the three months originally planned. “We built margin [of error] on top of margin [of error], specifically to allow for the fact that things go wrong on a place like Mars,” he says.

      The resuscitation of Spirit continued a record of long-distance network recoveries for the space program. In 1990, the Galileo spacecraft sent to Jupiter suffered what could have been a mission-ending failure when its umbrella-like main antenna failed to unfold properly, but JPL managed to reprogram the spacecraft in flight. In that case, mission managers sent compression software that allowed Galileo to transmit data and high-resolution images over a backup antenna.

      The rehabilitation of Spirit also came as explorations of Mars were putting unprecedented demands on the Deep Space Network. If Beagle 2 had remained in contact, NASA also would have assisted the Europeans with communications for that lander.

      To accommodate Spirit and Opportunity, the Deep Space Network has to maintain round-the-clock communication. Because they are on opposite sides of the planet, the two rovers operate on roughly opposite shifts. When one is in daylight, it gathers power through its solar panels, while the other powers down for the night.

      For the $860-million mission to be completely successful, scientists wanted both rovers actively searching for signs that liquid water existed on Mars.

      But, in any event, sending twin rovers to Mars served as insurance for NASA in case one robot was lost-redundant outposts of the 100-million-mile network.

      Next Page: What you should do to run a space network.

      What You Should Do

      To Run A Space Network”>

      What You Should Do To Run A Space Network
      • Automate processes.
        Encode many operations in a remote device, so it can solve its own problems.
      • Bulletproof your gear.
        Refine systems under your direct control, like Deep Space Network antennas, to make sure they arent the cause of an outage.
      • Be persistent.
        Analyze any shred of communication. Build theories. Exploit small wins.
      • Simulate potential problems.
        Test theories on duplicate devices, under your control, even if conditions arent alike.
      David F. Carr
      David F. Carr
      David F. Carr is the Technology Editor for Baseline Magazine, a Ziff Davis publication focused on information technology and its management, with an emphasis on measurable, bottom-line results. He wrote two of Baseline's cover stories focused on the role of technology in disaster recovery, one focused on the response to the tsunami in Indonesia and another on the City of New Orleans after Hurricane Katrina.David has been the author or co-author of many Baseline Case Dissections on corporate technology successes and failures (such as the role of Kmart's inept supply chain implementation in its decline versus Wal-Mart or the successful use of technology to create new market opportunities for office furniture maker Herman Miller). He has also written about the FAA's halting attempts to modernize air traffic control, and in 2003 he traveled to Sierra Leone and Liberia to report on the role of technology in United Nations peacekeeping.David joined Baseline prior to the launch of the magazine in 2001 and helped define popular elements of the magazine such as Gotcha!, which offers cautionary tales about technology pitfalls and how to avoid them.

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      MOST POPULAR ARTICLES

      Artificial Intelligence

      9 Best AI 3D Generators You Need...

      Sam Rinko - June 25, 2024 0
      AI 3D Generators are powerful tools for many different industries. Discover the best AI 3D Generators, and learn which is best for your specific use case.
      Read more
      Cloud

      RingCentral Expands Its Collaboration Platform

      Zeus Kerravala - November 22, 2023 0
      RingCentral adds AI-enabled contact center and hybrid event products to its suite of collaboration services.
      Read more
      Artificial Intelligence

      8 Best AI Data Analytics Software &...

      Aminu Abdullahi - January 18, 2024 0
      Learn the top AI data analytics software to use. Compare AI data analytics solutions & features to make the best choice for your business.
      Read more
      Latest News

      Zeus Kerravala on Networking: Multicloud, 5G, and...

      James Maguire - December 16, 2022 0
      I spoke with Zeus Kerravala, industry analyst at ZK Research, about the rapid changes in enterprise networking, as tech advances and digital transformation prompt...
      Read more
      Video

      Datadog President Amit Agarwal on Trends in...

      James Maguire - November 11, 2022 0
      I spoke with Amit Agarwal, President of Datadog, about infrastructure observability, from current trends to key challenges to the future of this rapidly growing...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2024 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×