Close
  • Latest News
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Logo
  • Latest News
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Home Latest News
    • PC Hardware

    Next-Generation Chips Tailored for Net Work

    By
    Peter Coffee
    -
    October 18, 2004
    Share
    Facebook
    Twitter
    Linkedin

      General-purpose technologies spin off task-centered tools. The trick is to know the right time to set off in that direction. Do it too soon, and you produce an amusing relic; do it too late, and you become one.

      The Fall Processor Forum, held at the beginning of this month in San Jose, Calif., offered well-timed examples of useful task-focused design. Initiatives such as the Octeon processor family from Cavium Networks remind me of a comment about the original Macintosh: “Its what got built once Apple knew what normal people wanted to do with a computer.” In the same way, next-generation chips reflect our improving knowledge of the tasks theyll have to perform.

      Microprocessors are perhaps the ultimate general-purpose device, but even their history reflects the eventual need for specialization. For example, early mainstream CPUs didnt have floating-point math hardware. The first IBM PC had an empty socket next to the 8/16-bit 8088 CPU, although IBM didnt admit knowing this could be filled with an 80-bit 8087 floating-point coprocessor (for which neither IBM nor Microsoft provided software support). Early PC applications, therefore, did floating-point math in software, with only a few (such as Autodesks AutoCAD) making the effort to use the math chip if present.

      By the time wed all progressed, though, through the 80286/68000 (full 16-bit) and 80386/68020 (32-bit) generations of PC and Macintosh systems, it was clear that floating-point computation wasnt a niche. Beginning with 80486/68040 desktop machines, floating point came on board as part of the package. Developers on every mainstream PC and workstation platform can now assume the presence of floating-point hardware and use the corresponding high-speed instructions to write more-powerful software in less time.

      The assimilation of floating-point hardware into PCs reminds me of the advent of cheap calculators, which freed high-school teachers from the need to make up easy test problems or teach slide-rule and table-interpolation techniques. When any feature goes into hardware, it becomes faster and more consistent as well as more accessible—whether in the classroom or inside a PC.

      So far, though, floating point is one of the rare cases of a royal road for a co-processing capability. I remember an ancient Intel ad for a forthcoming “text coprocessor”—the 82730, I believe. Its almost impossible to find anything today about that apparently short-lived idea.

      Thats why Im especially interested in several aspects of the Cavium Networks announcement that I mentioned earlier. Due next year, the Octeon “network services processor” family will include hardware accelerators for processor-intensive tasks that come up all the time in our Internet-centered workloads.

      PKZip and related compression/ decompression algorithms, for example, get a hardware jump-start with the Octeons on-board coprocessor; intrusion detection and anti-virus protection will be aided by a regular-expression processor block offering up to 16 concurrent hardware engines. Crypto algorithms, including Triple DES and AES, will also have the benefit of on-board accelerators.

      Packet processors and a TCP accelerator round out the Octeon arsenal of wire-speed capability at multi-gigabits-per- second data rates, all while running the rest of an application on multiple MIPS-architecture general-purpose cores (from two to 16 on a chip) at a comfortable 600MHz clock rate. If that seems slow, remember: High clock rates per se are not a benefit but a cost. More work per clock cycle is the goal.

      With broad support, the Octeon could show up in anything from a grid computing workstation to a data center appliance. Regardless of the applications that are found for such a versatile device, though, it presents developers with a crucial trade-off: They can have a fairly small number of general-purpose chip designs, requiring task-specific software that creates many openings for bugs, or they can have a larger number of task-focused chips and tool chains that require additional developer investment to master and use. Well see if Octeon is the right idea at the right time.

      Technology Editor Peter Coffee can be reached at [email protected].

      To read more Peter Coffee, subscribe to eWEEK magazine.

      Check out eWEEK.coms Desktop & Notebook Center at http://desktop.eweek.com for the latest news in desktop and notebook computing.

      Peter Coffee
      Peter Coffee is Director of Platform Research at salesforce.com, where he serves as a liaison with the developer community to define the opportunity and clarify developers' technical requirements on the company's evolving Apex Platform. Peter previously spent 18 years with eWEEK (formerly PC Week), the national news magazine of enterprise technology practice, where he reviewed software development tools and methods and wrote regular columns on emerging technologies and professional community issues.Before he began writing full-time in 1989, Peter spent eleven years in technical and management positions at Exxon and The Aerospace Corporation, including management of the latter company's first desktop computing planning team and applied research in applications of artificial intelligence techniques. He holds an engineering degree from MIT and an MBA from Pepperdine University, he has held teaching appointments in computer science, business analytics and information systems management at Pepperdine, UCLA, and Chapman College.

      MOST POPULAR ARTICLES

      Cybersecurity

      Visa’s Michael Jabbara on Cybersecurity and Digital...

      James Maguire - May 17, 2022 0
      I spoke with Michael Jabbara, VP and Global Head of Fraud Services at Visa, about the cybersecurity technology used to ensure the safe transfer...
      Read more
      Cloud

      Yotascale CEO Asim Razzaq on Controlling Multicloud...

      James Maguire - May 5, 2022 0
      Asim Razzaq, CEO of Yotascale, provides guidance on understanding—and containing—the complex cost structure of multicloud computing. Among the topics we covered:  As you survey the...
      Read more
      IT Management

      Intuit’s Nhung Ho on AI for the...

      James Maguire - May 13, 2022 0
      I spoke with Nhung Ho, Vice President of AI at Intuit, about adoption of AI in the small and medium-sized business market, and how...
      Read more
      Applications

      Cisco’s Thimaya Subaiya on Customer Experience in...

      James Maguire - May 10, 2022 0
      I spoke with Thimaya Subaiya, SVP and GM of Global Customer Experience at Cisco, about the factors that create good customer experience – and...
      Read more
      Big Data and Analytics

      GoodData CEO Roman Stanek on Business Intelligence...

      James Maguire - May 4, 2022 0
      I spoke with Roman Stanek, CEO of GoodData, about business intelligence, data as a service, and the frustration that many executives have with data...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2021 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.

      ×