Close
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
Read Down
Sign in
Close
Welcome!Log into your account
Forgot your password?
Read Down
Password recovery
Recover your password
Close
Search
Logo
Subscribe
Logo
  • Latest News
  • Artificial Intelligence
  • Video
  • Big Data and Analytics
  • Cloud
  • Networking
  • Cybersecurity
  • Applications
  • IT Management
  • Storage
  • Sponsored
  • Mobile
  • Small Business
  • Development
  • Database
  • Servers
  • Android
  • Apple
  • Innovation
  • Blogs
  • PC Hardware
  • Reviews
  • Search Engines
  • Virtualization
More
    Subscribe
    Home Latest News
    • Servers

    Fujitsu Looks to Accelerate Deep Learning Workloads

    Written by

    Jeff Burt
    Published August 10, 2016
    Share
    Facebook
    Twitter
    Linkedin

      eWEEK content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

      Engineers at Fujitsu Laboratories have developed new software that can speed up deep learning projects run over multiple GPUs.

      According to Fujitsu Labs officials, tests have found that the software used with 16 and 64 GPUs are 14.7 to 27 times faster than using a single GPU to run deep learning workloads, with increases in learning speeds 46 percent (on 16 GPUs) to 71 percent (on 64 GPUs). This is important given the increasing popularity of deep learning, a subset of machine learning, which is foundational to the development of artificial intelligence (AI).

      Machine learning essentially comprises two parts, training (where neural networks are taught object identification and other tasks) and inference (where they use this training to recognize and process unknown inputs). The use of deep learning techniques to train neural networks has grown over the past several years, helping to drive significant advances in such work as image and speech recognition and increasing the accuracy over other technologies, according to Fujitsu Labs officials. In addition, deep learning requires massive amounts of data for machine training, and GPUs—with their ability to process huge amounts of data in parallel—are better suited than CPUs.

      A challenge has been finding efficient ways to run deep learning workloads across multiple GPUs in parallel, the officials said. Right now, the primary way it’s done is to use multiple computers that are powered by GPUs, networked together and running in parallel. However, such arrangements are difficult to scale—the benefits of parallelization becomes increasingly more difficult to reach when the time it takes to share data between the computers grows, particularly when more than 10 systems are used in the network at the same time.

      The software developed by Fujitsu is designed to overcome those limitations, the researchers said. They took the new parallelization technologies and applied them to the open-source Caffe framework for deep learning. The software enables users to reduce the time needed for R&D, which in turn will lead to improved learning models, they said.

      Fujitsu Labs tested the software on the AlexNet neural network for image recognition, which produced the results that showed the improved learning speeds. Machine learning jobs that would take about a month on a single GPU-powered computer can now be processed in about a day by running it on 64 GPUs in parallel.

      Fujitsu Labs has developed two new technologies, one software for supercomputers that executes communications and operations at the same time and in parallel, while the other optimizes the processing methods based on the size of the shared data and the sequence of the deep learning processing. Combined, the software reduces the waiting time between processing batches, the researchers said.

      Fujitsu officials plan to commercialize the new technologies as part of the company’s Human Centric AI Zinrai portfolio sometime during the current fiscal year. Researchers expect to improve the software in hopes of further increasing the speed of training workloads.

      Machine learning and AI are key technologies in the increasingly digitized and automated way of life that comes with such emerging trends as the internet of things (IoT), cloud computing, data analytics and mobility. It’s already being using in such capabilities as photo tagging and fraud detection and will play a central role in such areas as autonomous cars and robotics.

      The goal is to create machines that can learn and base their actions on their experiences, similar to humans. Established tech vendors and a growing array of startups are creating products and technologies that will help drive the development of AI. Patrick Moorhead, principal analyst with Moor Insights and Strategy, has called AI an inflection point in the industry that companies need to grab on to or risk getting left at a disadvantage against competitors.

      Hyperscale players like Google and Facebook are making significant strides in the creation of such products, while system and component makers are building out their capabilities in the field. GPU maker Nvidia has made machine learning and AI key parts of its strategy for the future. Intel this week announced its intention to buy AI startup Nervana Systems to grow its capabilities in the space.

      Jeff Burt
      Jeff Burt
      Jeffrey Burt has been with eWEEK since 2000, covering an array of areas that includes servers, networking, PCs, processors, converged infrastructure, unified communications and the Internet of things.

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      Get the Free Newsletter!

      Subscribe to Daily Tech Insider for top news, trends & analysis

      MOST POPULAR ARTICLES

      Artificial Intelligence

      9 Best AI 3D Generators You Need...

      Sam Rinko - June 25, 2024 0
      AI 3D Generators are powerful tools for many different industries. Discover the best AI 3D Generators, and learn which is best for your specific use case.
      Read more
      Cloud

      RingCentral Expands Its Collaboration Platform

      Zeus Kerravala - November 22, 2023 0
      RingCentral adds AI-enabled contact center and hybrid event products to its suite of collaboration services.
      Read more
      Artificial Intelligence

      8 Best AI Data Analytics Software &...

      Aminu Abdullahi - January 18, 2024 0
      Learn the top AI data analytics software to use. Compare AI data analytics solutions & features to make the best choice for your business.
      Read more
      Latest News

      Zeus Kerravala on Networking: Multicloud, 5G, and...

      James Maguire - December 16, 2022 0
      I spoke with Zeus Kerravala, industry analyst at ZK Research, about the rapid changes in enterprise networking, as tech advances and digital transformation prompt...
      Read more
      Video

      Datadog President Amit Agarwal on Trends in...

      James Maguire - November 11, 2022 0
      I spoke with Amit Agarwal, President of Datadog, about infrastructure observability, from current trends to key challenges to the future of this rapidly growing...
      Read more
      Logo

      eWeek has the latest technology news and analysis, buying guides, and product reviews for IT professionals and technology buyers. The site’s focus is on innovative solutions and covering in-depth technical content. eWeek stays on the cutting edge of technology news and IT trends through interviews and expert analysis. Gain insight from top innovators and thought leaders in the fields of IT, business, enterprise software, startups, and more.

      Facebook
      Linkedin
      RSS
      Twitter
      Youtube

      Advertisers

      Advertise with TechnologyAdvice on eWeek and our other IT-focused platforms.

      Advertise with Us

      Menu

      • About eWeek
      • Subscribe to our Newsletter
      • Latest News

      Our Brands

      • Privacy Policy
      • Terms
      • About
      • Contact
      • Advertise
      • Sitemap
      • California – Do Not Sell My Information

      Property of TechnologyAdvice.
      © 2024 TechnologyAdvice. All Rights Reserved

      Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.